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Abstract. This chapter provides an overview of geographic information systems, 
spatial analysis and spatial statistics, and predictive ecological niche modeling as 
they apply to disease ecology. I provide a conceptual model of the epidemiology 
and outbreak ecology of anthrax and the landscape ecology of the pathogen 

to these two components of the anthrax-transmission and spore-survival model. 
Spatial clustering statistics are reviewed in the context of outbreak epidemiology 
and potential mechanical vector transmission. I then provide a primer on ecological 
niche theory and apply ecological niche modeling to estimate the potential 
geographic distribution of B. anthracis on the landscape of the contiguous United 
States under current and future climate scenarios and to estimate the unknown 
distribution of B. anthracis in Mexico. 

1. Introduction 

This chapter will briefly introduce geographic information systems (GIS), geographic 
information science (GISc), data development with GIS and remote sensing, and pre-
dictive ecological niche modeling (ENM) and then illustrate their uses in investigating 
the spatial distribution of Bacillus anthracis, the causative agent of anthrax. Secondarily,  
I will define the epidemiology of this disease in wildlife and livestock and indicate uses 
of GIS and ENM that can enhance our understanding of the disease. Although this 
chapter is limited to the spatial ecology of anthrax, readers are encouraged to think of 
parallel applications to other disease systems and public health issues. 

2. Epidemiology of Anthrax and Landscape Ecology of Bacillus anthracis  

To illustrate the application of GIS, spatial analyses and statistics, and ENM to disease 
ecology, it is first necessary to review the ecology and transmission of B. anthracis, the 
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causative agent of anthrax and the model disease system for this chapter. It is also 
important to distinguish between the epidemiology of the disease and the ecology of the 
disease agent. 

Anthrax disease is a continuing zoonosis in livestock and wildlife throughout many 
countries of the world [2, 3]. Although the disease still affects animal and human 
populations, its ecology is complex and its distribution remains poorly understood [2] 
despite recent efforts to model the spatial distribution of the agent [4]. The causative 
agent, B. anthracis, is a ubiquitous, spore-forming, Gram-positive bacterium known to 
survive in soils for long periods of time, resulting in some areas experiencing regularly 
occurring outbreaks [2]. Although a number of studies have addressed the physiological 
and ecological constraints on the species [2, 5–7], few studies have evaluated the geo-

Figure 1. A working model of the landscape ecology of Bacillus anthracis and the hypotheses of 
transmission pathways. Solid arrows indicate established transmission pathways between bacilli 
and animals. Dashed arrows represent hypothesized or poorly understood transmission pathways. 
This chapter is focused primarily on B. anthracis landscape ecology so spores are outlined. 

graphic potential of the species and the distribution of environmental parameters 
that can promote spore survival and subsequent outbreaks. The study of the disease and 
the agent can be divided into two discrete bodies of research, which then can be 

for B. anthracis and recognizes these two research components. Similar work has been 
developed by Hugh-Jones and De Vos [3] for wildlife transmission in Africa with an 
emphasis on outbreak ecology once an animal has become infected. In this chapter,  
I attempt to expand this conceptual model with a discussion on the landscape ecology of the
bacterium and the geographic limitations on B. anthracis in the contiguous United States.

further subdivided. Figure 1 illustrates a conceptual model of the transmission cycle 
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2.1. Epidemiology and Outbreak Ecology 

First, the study of anthrax can be defined by the body of work on the epidemiology and 
ecology of outbreaks and the disease transmission cycle. This research is focused on a 
variety of climatic and local weather events that promote outbreaks and the ecology of 
affected species, which promotes outbreaks or larger epizootics. Although still lacking 
a full body of literature, a number of studies have documented the climatic conditions 
(and associated local weather patterns) that promote livestock outbreaks [8, 9] and 
wildlife outbreaks [3, 10–12]. In a synthesis on anthrax and wildlife, Hugh-Jones and 
De Vos [3] define the anthrax season as approximately late spring to early fall. 
There is a need to expand quantitative analyses of seasonality and outbreak periodicity, 
particularly outside of African wildlife populations. This area of research also is 
focused on the movement ecology of wildlife species in relation to outbreaks and 
anthrax seasonality [12].  

Likewise, studies on the potential role of necrophilic flies to increase the number of 
browsing wildlife cases locally [13] would fit into this category of anthrax research. 
Hugh-Jones and De Vos [3] reviewed this phenomenon in African wildlife and suggest 
that a similar mode of transmission could be at work in the United States with deer. 
Blackburn [12] confirmed the presence of B. anthracis in necrophilic flies collected on 
and around disease-positive, dead white-tailed Odocoileus virginianus in west Texas 
and named the Hugh-Jones and De Vos [3] concept the “case multiplier hypothesis” of 
anthrax transmission. This states that necrophilic fly species likely increase cases in 
browsers by feeding on disease-positive carcasses and then depositing B. anthracis 
spores on nearby preferential browse; other animals will feed on the contaminated 
vegetation and contract the disease. Although data on this mode of transmission are 
quite limited from field investigations [12–14] given our understanding of deer feeding 
preferences in the United States, this is a plausible and testable hypothesis.  

There is a second working hypothesis on mechanical transmission by hemato-
phagous flies that also was reviewed by Hugh-Jones and De Vos [3] and was evident in 
the literature for much of the previous century [15–18]. In recent work, at least 21 
different species from five genera of the Tabanidae family of flies have been confirmed 
under experimental conditions to transmit anthrax bacilli on their body parts [19]. This 
potential mode of transmission suggests that biting flies can pick up spores on their 
large mouth parts or legs during a blood meal from a bacterimic animal and then 
transmit them to other animals during subsequent blood meals. In an early study by Rao 
and Mohiyadeen [16], the researchers were able to isolate bacilli from the edema of 
bacterimic cattle and biting flies feeding on these animals. Given that hematophagous 
flies have greater flight strength and potential to travel farther distances, Hugh-Jones 
and De Vos [3] suggest that this mode of transmission may explain the wave-like 
pattern of large and fast-moving outbreaks, particularly those that expand beyond 
individual herds or fenced pastures. This also might explain interspecific infections 
during outbreaks in which species with different feeding ecologies are infected during 
the same outbreak. In North America, for example, infections in deer of the Cervidae 
family and cattle or bison in the Bovidae family have been documented in single 
outbreaks [12]. Although cervids may feed on some low-growing herbs and forbs, 
Texas deer primarily feed on browse during the summer period when anthrax outbreaks 
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are most likely [20]. Gates et al. [21] suggest that there might be a relationship between 
high biting-fly populations and large outbreaks in Canadian wood bison (Bison bison 
athabascae) but researchers have yet to quantify this phenomenon or isolate bacilli 
from biting flies during an outbreak.  

Blackburn [12] provided limited evidence that there is a positive, quantitative 
relationship in biting fly densities and the spatial pattern of positive deer cases on a 
study ranch in west Texas. This study directly employed spatial statistics and geo-
graphic information to quantify spatial clusters of high fly counts during trapping 
periods in relation to individual deer movements (from VHF telemetry) and current and 
historical case locations of dead deer. Although this study was limited to spatial 
relationships and lacks the “smoking gun” of spore-positive flies, it does suggest that a 
“spatial multiplier hypothesis” is plausible and worth further investigation. This hypo-
thesis suggests that interspecific transmission between wildlife species, or wildlife and 
livestock, during large outbreaks may be due to mechanical transmission by biting flies 
and that fly movement patterns may expand the spatial footprint of an outbreak. A third 
testable hypothesis during multispecies epizootics is that both the case multiplier and 
spatial multiplier hypotheses are working in tandem.  

Studies on each of the hypotheses presented in this section can directly employ 
spatio-temporal analyses of climate data [9] and spatial analyses, such as spatial cluster 
statistics [12, 22], for fly–animal relationships. 

2.2. Landscape Ecology of Bacillus anthracis 

Each of the patterns and processes in the section above aim to identify or describe 
anthrax outbreaks in relation to transmission pathways and species interactions. How-
ever, for any of the interactions above to take place and promote the transmission and 
subsequent infection of anthrax bacilli, the bacilli have to be present. This means that, 
for naturally occurring outbreaks to occur, we first must understand the landscape-level 
patterns that promote spore survival and subsequent exposure to populations. I define 
this area of anthrax research as the landscape ecology of B. anthracis. To understand 
the ecology of outbreaks presented above, and given that most research on B. anthracis 
currently suggests that germination and multiplication occurs in the host while spore 
survival occurs in the soil [2], it is necessary to identify the geographic area where 
bacilli spores can thrive for long periods of time. Landscape ecology provides a useful 
perspective of scale for such analyses. Haines-Young et al. [23] provide an overview of 
landscape ecology and the role that GIS can play to test hypotheses within this 
theoretical framework. For this chapter, we can define landscape ecology as the study 
of relationships between the biological requirements of the bacilli in spore form and the 
ecological conditions that support spore survival and the geographic areas where these 
requirements are met. 

This landscape perspective can be useful for understanding the broad-scale 
geographic distribution of the bacterium [4, 5] and identifying areas where wildlife or 
livestock may be at risk. Likewise, micro-level studies on spore survival and bacilli 
multiplication in soil are key parts of this approach [2, 7, 24].  
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critical to developing or improving disease surveillance and control programs. This is 
especially true of anthrax given the complexity of transmission and spore survival 
described in this chapter. Oftentimes, determining the complete spatial distribution of a 
disease agent or its host, reservoir, or vector requires the use of spatially explicit 
predictive models and any available data on the known occurrences of outbreak foci or 
host/reservoir or vector populations. Because of this, GIS and spatial analyses have 
become important tools in the study of anthrax epidemiology and the landscape ecology 
of B. anthracis. 

The bulk of the analyses presented in this chapter focuses on the landscape ecology 
perspective and aims to define the potential geographic distribution of B. anthracis in 
the lower 48 states of the United States, under both current ecological conditions and a 
future climate-change scenario, and across the country of Mexico, where surveillance 
data on this disease are lacking. 

3. Geographic Information Systems and Geographic Information Science 

Today, GIS and GISc play an ever-increasing role in international research that focuses 
on disease distributions [25], ecology [4], and epidemiology [26]. The application of 
spatial data management and spatial analyses intuitively fits into research agendas that 
focus on a wide variety of topics, such as resource management [27], health and disease 
surveillance [28, 29], basic ecology [30], and socio-environmental [31] and socio-
economic patterns [32]. As the application of GIS technology and the GISc paradigm 
grows, so, too, does the number of GIS techniques, computer applications and 
hardware, and GISc-trained personnel.  

3.1. Geographic Information Systems 

3.1.1. Geographic Information Systems for Disease Studies 

Although GIS has been defined in great detail [33, 34] and has a growing body of 
literature, I will define it briefly in the context of disease surveillance and the modeling 
of disease ecology. GIS is a combination of computer hardware, computer software, 
and database technologies that allows for the storage, management/editing, visualization 
(mapping), and analysis of spatial data [35]. The primary component of a GIS is the 
ability to establish relationships within data sets and to analyze them spatially. Spatial 
here is defined as geographic relationships between data sets (such as disease outbreak 
locations and environmental parameters such as temperature). Disease studies readily 
lend themselves to GIS-based analyses because, simply stated, diseases are spatial in 
nature. Pathogen biology and transmission are linked to specific ecologies that promote 
the long-term survival and fitness of the pathogen, its reservoir or host populations 

 

B. anthracis emergence, propagation, and subsequent exposure to populations at risk is 
Understanding the geographic areas and ecological characteristics that promote

or environment that sustain its population (e.g., soil foci for B. anthracis [2] or populations 
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of small mammals that circulate Yersinia pestis [36]), or vector species that transmit 
disease agents from host to host (e.g., tabanid flies that move B. anthracis spores [12], 
mosquitoes that vector malaria [25] or ticks that move Nairovirus species for Crimean-
Congo hemorrhagic fever [37]). In these examples, we can evaluate geographic 
phenomena, such as habitats, that allow for the interaction of disease agents, vectors, 
and hosts. This is done through the integration of multiple disparate (and often 
idiosyncratic) data sets linked through relational databases, dynamic maps, and spatially 
explicit modeling techniques and spatial statistics. In GIS, the visualization component 
equates to digital map development or graphics that depict spatial relationships (such as 
histograms). The disparate data sets used to develop a spatial visualization (map) of 
habitats might include satellite-derived or GIS-interpolated precipitation maps, elevation 

maps). Likewise, the data sets used to map a disease distribution might be known case 
locations (perhaps based on serology, laboratory diagnostics, or case definitions), 
known reservoir species’ ranges, or agent-positive vector sampling sites. 

Figure 2. The six steps of the predictive ecological niche modeling [ENM] process for modeling 
Bacillus anthracis in the contiguous U.S. and Mexico: (1) environmental variables are processed 
in GIS/remote sensing and used in the ENM process to develop the Hutchinsonian N dimensional 
hypervolume; (2) Locality data from culture-positive B. anthracis are input into the ENM 
application; (3) the modeling system iteratively develops a rule-set of logic strings that describes 
the ecological space that supports the species; (4) the rule-set is applied to the landscape to 
develop a map of presence/absence; (5) the rule-set from the known locations can be applied to a 
environmental coverage set for an area lacking occurrence data; and (6) the projected rule-set is 
applied to the unknown landscape for a first prediction. 

maps, soil types, or forest cover (see Fig. 2, inset 1, for an example of environmental 
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By evaluating each of these data sets in a multivariate paradigm, a single map can 
be produced to evaluate the intersections in geographic space where appropriate 
environmental conditions exist to promote the target species or disease-transmission 
cycle [4, 25, 38]. In short, GIS is a methodology and digital infrastructure for evaluating 
data in space. This is done through integrating databases with map visualizations. With 
today’s technology, databases are limited only by intellectual imagination. As long as 
we invest effort and forethought into our database infrastructure, we will be able to 
expand and scale our GIS applications to capture data on multiple diseases, disease 
ecosystems, and study designs. This can be done across scales from the local or micro 
environment to the national or regional macro scale. 

Employing GIS requires two infrastructures. The first, a physical infrastructure 
of computers, servers, network capabilities, and software, is necessary to employ the 
technology. In the ever-growing computer market, the availability of high-end computers 
at low prices has made access to high-powered computers tenable in developed and 
developing countries. Secondly (and more importantly), a data infrastructure of spatial 
data sets, disease data sets, and environmental data sets is required to construct GIS data 
layers and build multilayer maps that reflect meaningful epidemiological relationships.  

Within the context of how GIS is employed in disease studies, it is important to 
distinguish how data sets are organized, particularly as this chapter is focused on more 
sophisticated applications of GIS for constructing predictive ENM scenarios for B. 
anthracis. Data within a GIS can be organized into three data formats. First, there are 
two basic GIS data types: vector and raster. The main difference between these two 
formats is how the geographic data values are stored within a database. Vector GIS 
defines geographic features into three major geometric objects: points (e.g., a disease 
case location or sampling site), lines (e.g., road networks, streams, railroad lines), and 

illustrates a map made entirely of vector features). Descriptive data for each point, line, 
or polygon are stored as attributes in an accompanying data table that links respective 
vector geometry with appropriate data values. A raster GIS uses a spatial grid with 
symmetrical cells to store the data. With raster data, attributes are assigned to each grid 

insets 1 and 5, illustrate raster layers). For example, a 1-km2 raster file of temperature 
data would represent equally sized square grid cells each with a numerical value 
representing the temperature for that 1 × 1-km pixel. In this way, a variety of raster 
files, such as soil pH, vegetation, or elevation, all could be stored in a GIS and 
represent these values with equal pixel sizes. Because each cell occupies the same 
space, multiple spatial layers can be compared within each cell, making raster GIS 
useful for layering multiple environmental data sets and finding associations between 
them. Vector GIS is well-suited for identifying clusters [22] and diffusion patterns [39] 
across a landscape or study area.  

The third data format managed within the GIS is the aspatial database table (those 
tables without spatial data assigned). For example, data developed by a collaborating 
laboratory, such as molecular genetic data about the disease agent, can be managed and 
stored within the GIS for later data joins or assignment to spatial locations. For a 
detailed review of GIS methods for developing data in all three of these formats, see 
Curtis et al. [31]. 

polygons (e.g., political boundaries, building footprints, water bodies; Fig. 2, inset 2, 

cell in the database and numerical values are used to represent various features (Fig. 2, 
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3.1.2. Visualizing Data within a Geographic Information System – Maps 

maps are easy to read. Although GIS is more dynamic than static map production, it is 
important to realize the value of maps for improving our understanding of complex 
systems such as disease-transmission cycles [37] or the relationship between human 
settlement patterns and infectious diseases [28, 40]. We need to remember that maps 
are only as good as the data we invest into making them, but maps provide easy tools 
for visualizing disease distributions. Imagine trying to describe the distribution of 
Crimean-Congo hemorrhagic fever across a country as large as Kazakhstan (the ninth 
largest country by land mass) without a map to keep track of all the areas you are trying 
to define. That would be quite difficult compared with showing a single map of the 
disease distribution. Now imagine trying to relate that message to health managers who 
might control eradication strategies and trying to sort out which areas should be 
prioritized first. Managers are likely to communicate and make decisions more clearly 
through maps. It is important that these maps have the best data available, including 
precise spatial locality data and accurate data attributes. That is where GIS and data 
management become important.  

Although maps are an important output from GIS analyses, it is important to 
realize that map development is only one of several tools in the GIS toolbox for 
improving our understanding of disease distribution, ecology, and epidemiology. GIS 
provides a set of tools for developing data sets for advanced spatial analyses and 
statistics to test explicit hypotheses (often completed outside of the primary GIS soft-
ware environment, such as in a statistics program or programming environment).  

3.2. Geographic Information Science and Spatial Data Analysis 

GISc can be summarized as the paradigm for formulating geospatial hypotheses and 
proper employment of the tools of GIS to solve spatially driven research problems 
systematically. Goodchild [41] first introduced the term, and the field has grown since. 
Mark [42] provides a detailed review of the evolution of naming the term, Goodchild 
[43] discusses the terminology further, and Goodchild [44] reviews the roles of GISc as 
split between the study of GIS to advance its technology and the use of GIS technology 
to advance scientific fields of study within a spatial framework. In the increasingly fast-
growing world of computer technology and push-button analytical tools, GISc provides 
a systems approach to compartmentalizing, evaluating, and organizing these tools. 
GISc could be considered the academic discipline for organizing GIS and promoting 
a proper educational structure to prepare researchers for sustaining GIS and for 
employing it within a hypothesis-testing framework focused on addressing scientific 
research. In addition to training basic GIS techniques and data manipulation, GISc can 
integrate formal training in spatial analysis (such as point-pattern analysis, clustering 
algorithms, and probability-based testing), geographic processes, biogeography, and 
spatial ecology to examine spatial phenomena.  

In the context of spatial epidemiology, and this chapter, GISc should be defined 
as that body of work that advances our knowledge of disease ecology through an 
improved understanding of the spatial patterns and processes that promote disease 

The primary visualization outputs from GIS analyses are maps (Fig. 2). Simply stated, 
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propagation and transmission. With that in mind, we can consider a three-step process 
for (1) evaluating the distribution of a disease visually, (2) exploring patterns of 
disease (such as outbreaks or vector population dynamics) using spatial statistics, and 
(3) modeling geographic distributions of disease with spatially explicit predictive 
models. Anselin [1] provides a generic overview of this process and a review of the 
classical literature from the field. Here I attempt to integrate those steps into the study 
of B. anthracis ecology and anthrax to establish a framework for advancing our 
knowledge of this pathogen and its natural ecology and epidemiology.  

3.2.1. A Framework for Integrating Geographic Information Systems and Spatial 
Analysis into Disease Ecology 

As an expansion of section 2.1.2 above, the development of maps that relate the spatial 
position of anthrax outbreaks to the landscape illustrates Anselin’s concept of exploratory 
spatial data analysis (ESDA) [1]. Briefly, data visualization can be considered a first 
step in evaluating a data set (or data sets) to determine the spatial nature of the data and 
evaluate the spatial patterns. This often leads to the development of more than maps, 
including histrograms, graphs, box plots, or animations, that allow the researcher to 
explore the data and identify possible outliers (spatial or attribute data) or visual 

illustrates a simple point map of the distribution of anthrax outbreaks in the contiguous 
United States from 1957 to 2005. Although there is no statistical analysis applied to the 

outbreaks across the lower 48 states over a relatively long time period. Although we 
will discuss more sophisticated analytical tools in later sections of this chapter, this first 
step does provide useful information. For example, it is clear from this map that 
outbreaks are concentrated in two areas (southwestern Texas and the Dakotas), with 
smaller numbers of outbreaks in the western-most states and eastern Oklahoma. 
Knowing this, one now can think about how this pattern may have developed. How did 
B. anthracis get from the southern states to the northern states? How did it move from 
east to west? Is there some environmental gradient in the central portion of the land-
scape that prohibits outbreaks in the eastern states during this period? These questions 
are easier to pose with the map in hand, illustrating an important part of the ESDA 
process: the development of hypotheses to test on this spatial distribution. 

Anselin’s [1] second step in the ESDA process is the use of measures of spatial 
autocorrelation to identify statistically significant patterns within data sets. Here these 
patterns refer to disease outbreaks. There is a growing body of spatial statistics that 
employs local measures of spatial autocorrelation to determine whether statistically 
significant spatial patterns exist within a data distribution. Geographic areas in which 
more outbreaks occur than would be expected by random chance are defined as hot-
spots; those areas with significantly fewer outbreaks than would be expected randomly 
are defined as cold spots [45]. These statistics are performed through iterative algorithms 
that evaluate the relationship between outbreak occurrences (at some aggregated level, 
such as a polygon grid surface or a political boundary) and neighboring occurrences. 
These neighbors can be defined through a neighbor relationship, in which some 
boundary of these polygons is shared [1] or based on proximity within a distance 

clusters (aggregations of data observations in close spatial proximity). Figure 2, inset 2, 

data in Fig. 2, inset 2, the map alone is informative for determining the location of 
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threshold [22]. Two known studies have employed spatial autocorrelation in the study 
of anthrax epidemiology. 

3.2.2. Employing Local Indicators of Spatial Autocorrelation to Anthrax Data 

Blackburn [12] employed the Getis statistic to determine whether significant local 
spatial clusters occurred for any biting fly-trapping events during the 2005 anthrax 
season on a study ranch in west Texas. The goal of the study was to determine whether 
there were areas within the outbreak zone that had significantly high tabanid fly 
catches. The Gi*(d) statistic tests for local spatial clusters in group-level data and 
assesses the association of the variable of interest within a set distance of each observ-
ation in the data set tested [46]. Gi*(d) is useful for identifying individual members of 
local cluster events [22]. The Blackburn [12] study identified both cold spots of low 
fly-catch rates and hotspots of high fly-catch rates. This then was coupled with the spatial 
distribution of anthrax-positive deer carcasses for that anthrax season plus historical 

between outbreaks and fly densities, the spatial association between clusters of biting 

Figure 3. Spatial clusters of tabanid flies on a study ranch during the 2005 Texas anthrax season. 
Setups equal three time periods that divide the sampling season. Critical distances represent the 
spatial scale at which any given trapping location was part of a spatial cluster. Gray circles 
represent sampling areas that were not significant, red circles indicate spatial hotspots of 
significantly high catch rates for tabanid flies, and blue circles indicate significantly lower than 
expected catch rates. Black dots across the eastern portion of the study represent carcass locations 
of anthrax-positive deer. Notice the spatial overlap between fly hotspots and anthrax locations. 
Photograph insert: a Nzi fly trap setup used to collect flies. Adapted from Blackburn [12]. 

flies and the location of carcasses certainly warrants further investigation into possible 

cases from 2001 to 2005 (Fig. 3). Although not confirming any direct relationship 
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causal relationships. Even in the absence of a direct diagnostic link between flies and 
disease transmission, there is direct overlap between high catch rates of biting flies and 
diseased carcasses. There may be an indirect effect between immune suppression  
in deer and seasonal inundation with flies. This alone may serve to increase the number 
of susceptible hosts in a given outbreak season.  

A second study employed the same Getis statistic to the spatial distribution of 
anthrax outbreaks in Kazakhstan for four separate decades from 1960 to 1990 [47]. In 
the second study, only hotspots, or significantly high outbreak counts, were evaluated 
for statistical significance. In this latter study, cattle and sheep outbreaks were aggregated 
to fixed-width grid cells for four separate decades and the spatial statistic was calculated 
for each decade separately. This provided a time series of four maps to evaluate areas 

illustrates the decadal hotspots of cattle outbreaks in Kazakhstan. Both of these studies 
illustrate the use of ESDA for evaluating disease ecology within a hypothesis-testing 
framework. However, these measures of spatial autocorrelation are inferential and do 
not provide any causality of high fly-catch rates or counts of cattle outbreaks but rather 
where these events cluster in space. 

 
Figure 4. Decadal spatio-temporal clusters of anthrax outbreaks in cattle from Kazakhstan during 
the period 1960–1999. Grayscale ramp indicates the spatial scale of the cluster as determined by 
the critical distance for that g-score. Black arrows indicate areas in which significant clusters of 
outbreaks disappeared during the study period; the red arrow indicates an area in which a cluster 
developed in the latter decades of the study period. Cluster data adapted from Sagiyev et al. [47]. 

of long-term outbreak persistence across the country and the time period. Figure 4 
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It is also important to note that both of these examples of cluster analysis focus on 
the spatial patterns of mechanical vectors or individual outbreaks. Both of these studies 
represent the use of GIS and spatial analysis for evaluating components of disease 
transmission and ecology and do not employ the landscape approach or evaluate direct 
spatial relationships between the environment and B. anthracis.  

The third approach presented in Anselin [1] is to employ a predictive modeling 
approach to relate parameters to spatial patterns. As mentioned in previous sections, 
spatial patterns identified during a naturally occurring anthrax outbreak must be 
occurring in geographic regions in which bacilli in spore form can be maintained in the 
environment. To identify these areas, it is necessary to merge Anselin’s third concept 
with a modeling approach that can address the landscape ecology of B. anthracis and 
relate culture-positive outbreak locations to an ecological signature that defines the 
range limits of the disease agent. ENM provides an ideal tool for predicting species’ 
distributions. In the remainder of the chapter, I will define ENM and present examples 
of its application to B. anthracis ecology. 

4. Evaluating Landscape Ecology with Predictive Ecological Niche Modeling  

4.1. A Primer on Ecological Niche Theory 

To understand how ENM can be useful for predicting the geographic space in which 
anthrax outbreaks may occur naturally, it is first important to define the concept of the 
ecological niche and provide a conceptual framework for the modeling process. 

Hutchinson [48] provides an excellent overview of ecological niche theory and 
provides a reference to the original introduction of the term “niche” in the ecological 
literature. Hutchinson argues that Johnson [49] was the first to use the term, though a 
more rigorous and technical definition was provided by Grinnell [50], which often 
serves as a key reference in many niche-modeling articles. Grinnell defines the eco-
logical niche as a limited range of ecological variables that could maintain a population 
without immigration. As part of this definition, Grinnell [50] states that no two species 
could occupy a single niche. This definition later was expanded into a quantifiable 
ecological space by Hutchinson in two articles [51, 52].  

While examining relationships between phytoplankton and chemical properties 
within a lake system, Hutchinson [51, page 20, footnote 5] proposed that the ecological 
niche can be “…defined as the sum of all environmental factors acting on the organism; 
the niche thus defined is a region of an n-dimensional hyper-space…” Hutchinson [52] 
then expanded this definition to an n-dimensional hyper-volume of parameters that 
could be ordered linearly to define the fundamental niche or the potential ecological 
space that could maintain a species. Hutchinson [52], and later MacArthur [53], also 
define the realized niche as that limited portion of ecological space that is actually used 
by a species owing to biological interactions (such as competition, dispersal limits, and 
historical events like local extirpation). Under the Hutchinsonian definition, there is 
acknowledgement that biological interactions play a role in limiting the available 
ecological space and actual geographic space in which a species can survive. Morrison 
and Hall [54] argue that the Grinellian niche definition can be considered a dimension 
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of the Hutchinsonian niche. For a further review of ecological niche theory, see 
Morrison and Hall [54] and Chase and Leibold [55].  

In the context of this chapter, the ecological niche is used as a construct to evaluate 
spatially explicit modeling approaches to define the potential geographic distribution of 
a species. This of course is not limited to disease studies and, in fact, has been tested 
rigorously across a wide range of taxa (see Blackburn [12] for a partial review of taxa 
modeled). When attempting to understand geographic patterns of disease distribution 
(or any species for that matter), it is important to define clearly the ecological space 
being evaluated [56] and the ecological theory that is being tested [54].  

4.2. Predictive Ecological Niche Modeling 

Predictive ENM provides an ideal tool for determining disease agent or vector 
distributions using GIS data and remotely sensed data to model the environments that 
might support disease outbreaks [56, 57]. Currently, several modeling approaches are 
available to estimate species’ distributions (e.g., Stockwell and Peters [58] – genetic 
algorithm for rule-set prediction [GARP]; Rogers [25, 59] – Discriminant Function; 
Phillips et al. [60] – MaxEnt). In all of these models, the goal is to identify the geo-
graphic region and ecological environments that can sustain the disease agent or promote 
interaction/infection through host–vector interaction. Identifying these regions is done 
through computationally intensive iterative algorithms that pattern match disease case 
or vector species’ localities with environmental data layers. The goal is to identify 
nonrandom relationships between case locations and the environment, either through 
pattern matching with post hoc statistical evaluation of those patterns or through direct 
statistical relationships. Once these relationships are identified, the user can data mine 
the modeling outputs for biological information. Several recent articles have employed 
ENM successfully to describe the distribution of diseases or as predictions of host/ 
reservoir populations [38], vector populations [61], or disease-agent presence from 
outbreak data [4, 62].  

Although the software application is described in some detail below, it is useful to 

diagram of the modeling system and the input data sets required to produce potential 
geographic distributions for B. anthracis. I have divided the modeling process into six 
parts. First, an environmental coverage set of ecological variables is input into the 

describes the relationships between B. anthracis presence and absence is developed. 

from the modeling software) and with a simplified visualization of ecological space 
with two variables. In the examples used in this figure, the n-dimensional hyper-volume 

next step in the modeling process, in which the rule set is applied to the landscape to 
produce a potential geographic distribution for the species. One advantage of the GARP 
modeling system is the opportunity to project the rule set onto landscapes that lack 
occurrence data. Step five illustrates this, with the rule set from the U.S. model being 
applied to the landscape (and variable) space of Mexico. Notice it is an identical data 

provide a conceptual overview of the modeling process employed. Figure 2 provides a 

modeling software (Fig. 2, inset 1). Next, input data of disease occurrence are input into 
the modeling software (Fig. 2, inset 2). In step three, the rule set (see below) that 

Figure 2, inset 3, illustrates this with a set of if/then logic strings (the actual rule set 

would be constructed from five ecological variables. Figure 2, inset 4, illustrates the 
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step six, the rule-set relationships for Mexico are applied to the landscape to create a 
potential geographic distribution for B. anthracis. Steps five and six could be replaced 
here with data from future climate scenarios to illustrate the concept for modeling 
climate change. 

4.3. The Genetic Algorithm for Rule-Set Prediction 

In this chapter, I present three ENM scenarios to describe the potential geographic 
distribution of B. anthracis on the landscape of the lower 48 contiguous United States 
and Mexico under current climatic conditions and provide a first estimate of the 
geographic potential for the species in 2050. For all three modeling scenarios, I employ 
the GARP modeling algorithm. The GARP modeling system has been explained in 
detail elsewhere [58], as have examples of the application of GARP to disease systems 
[4, 40].  

In brief, this study employed the DesktopGARP version 1.1.6 [DG] application to 

a presence-only modeling technique that determines nonrandom associations between 
point localities (anthrax outbreak locations) and environmental parameters (environmental 
“coverages”) [58, 63]. Results are in the form of presence/absence predictions based on 
a set of heterogeneous rules.  

GARP modeling is stochastic in nature, owing in part to both the genetic algorithm 
for building models and the random partitioning of input-locality data. In other words, 
GARP is a random walk through variable space. Because of this, GARP can generate 
multiple solutions across multiple model runs. To evaluate this potential intermodel 
variation, it is critical to develop multiple models. Optimal models are those that 
compromise between omission (exclusion of known locations from the model) and 
commission (inclusion of areas with no known cases) [64]. DG employs a “best subset” 
procedure to optimize model outputs by selecting models with user-defined omission 
and commission thresholds.  

The modeling approach is a two-step process wherein rules are generated to 
describe presence and absence in variable space. This rule set then is applied to the land-
scape pixel by pixel to create a spatially explicit prediction of presence and absence. 

GARP outputs are rasterized coverages of the study area representing presence and 
absence pixels that can be manipulated in a GIS. These individual models can be 
summated to identify geographic areas in which none, some, or all of the models 
predict presence or absence [65]. The greater the number of models that agree, the more 
certainty there is in the prediction classification [62]. Likewise, similarity across 
models indicates stability in the modeling system. For an in-depth review of employing 
DG, see McNyset [66]. 

4.3.1. Input Data: Occurrences of Bacillus anthracis 

A GIS database of specific anthrax outbreak localities within the 48 contiguous United 
States was developed from a variety of data sources for the period 2000 to 2005, with 
the exception of a 1957 outbreak report that could be mapped at the point level for 

set to the U.S. coverage set in Fig. 2, inset 1, but for the geographic space of Mexico. In 

develop all GARP models (available from www.lifemapper.org/desktopgarp). GARP is 
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Oklahoma and a 1968 outbreak for east central California. To be included in the final 
modeling data set, laboratory diagnostics had to confirm the presence of bacilli. Suspect 
cases were removed from this modeling process. Point data representing confirmed 
wildlife and livestock outbreaks were available from six states representing three 
regions of anthrax outbreaks for the contiguous 48 states: (1) the Dakotas Region 
(North Dakota, South Dakota, Minnesota), (2) the Southern Region (Oklahoma, Texas), 

the sample sizes and methods of data collection for each of the states used in this 
analysis. These occurrence data were used in all three modeling scenarios included in 
this chapter. 

TABLE 1. Data Sources for Anthrax-Outbreak Localities (1957–2005) Used to Develop Ecological 
Niche Models of Bacillus anthracis in the Contiguous United States and to Project the Distribution 
in Mexico 

Data Data source 
Outbreak locality 
data 

  

     Minnesota Minnesota Board of Animal Health 
     North Dakota North Dakota State University Veterinary Diagnostic Laboratory 
     South Dakota South Dakota State University Agriculture Extension and GIS Center for 

Excellence 
     Oklahoma Oklahoma Department of Agriculture 

     Texas U.S. Centers for Disease Control and Prevention 
Louisiana State University Field Investigations 

     Nevada U.S. Department of Agriculture Animal and Plant Health Inspection Service 
     California U.S. Centers for Disease Control and Prevention 

California Department of Food and Agriculture 
Dr. Frank Paterson 

4.3.2. Input Data: Environmental Coverages 

4.3.2.1. Current-day conditions (1950–2000) 

For the two current-day modeling scenarios (B. anthracis in the United States and the 
distribution in Mexico), a set of environmental coverages was constructed from publicly 
available climatic and biophysical parameters. Nineteen variables were downloaded 
from the WorldClim data set representative of various temperature and precipitation 

including temperature and vegetation measures (e.g., normalized difference vegetation 
index [NDVI]), were provided by the TALA research group at Oxford University [68]. 
All environmental coverages were resampled to 0.10 degree2 (~8 × 8 km) and clipped 
to the boundary of the 48 contiguous United States and again separately for Mexico. 
All data sets were prepared using ERDAS Imagine version 8.7 (Leica GeoSystems,  
St. Gallen, Switzerland), ArcGIS 9.2, and ArcView 3.2a (ESRI, Redlands, CA). To 
select the variables used in any modeling scenario, a rigorous culling methodology was 
applied. This is described in detail in Blackburn et al. [4]. Variables in the coverage sets 

and (3) the Western Region (Nevada, California; Fig. 2, inset 2). Table 1 summarizes 

are presented in Table 2. 

measurements (www.worldclim.org) [67]. Thirteen additional environmental variables, 
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TABLE 2. Environmental Coverages Used to Develop Predictive Ecological Niche Models of 
Bacillus anthracis for the Contiguous United States and to Project the Potential Geographic 
Distribution of the Pathogen in Mexico and the United States in the Year 2050 

Data Data Sources 
Current-day coverages (United States and Mexico study)   
     Mean annual temperature (°C) WorldClim data set; Hijmans et al. [67] 
     Annual precipitation (mm) WorldClim data set; Hijmans et al. [67] 
     Elevation (m above mean sea level) TALA Research Group, Hay et al. [68] 
     TFP mean NDVI TALA Research Group, Hay et al. [68] 
     TFP NDVI annual amplitude TALA Research Group, Hay et al. [68] 
Current-day/future-scenario coverages (HADCM3 B2 
scenario) 

  

     Annual temperature (°C) IPCC (2001) 
     Maximum annual temperature IPCC (2001) 
     Minimum annual temperature IPCC (2001) 
     Annual precipitation (mm) IPCC (2001) 
     Annual solar radiation IPCC (2001) 
     Annual wind IPCC (2001) 
     Elevation (m above sea level) TALA Research Group, Hay et al. [68] 
     Soil pH Blackburn et al. [4]; STATSGO database 
     Soil moisture Blackburn et al. [4]; STATSGO database 

TFP, temporal Fourier processed [68]; NDVI, normalized difference vegetation index. 

4.3.2.2. Future data set (2050) 

A third modeling scenario was constructed for this chapter to illustrate the potential 
changes in B. anthracis distribution on the landscape in 2050 under a climate-change 
scenario. For this modeling experiment, I used the HADCM3 B2 climate data set for 
2050 [69]. This scenario is constructed from a 30-year average based around 2055, 
excluding effects of potential increased climate variability [70]. The B2 scenario is a 
conservative estimate of overall temperature increase, ranging from 2.1–3.9°C, defined 
as “a world in which emphasis is on local solutions to economic, social, and environ-
mental sustainability. It is…a heterogeneous world with less rapid and more diverse 
technological change but a strong emphasis on community initiative and social innovation 
to find local, rather than global solutions” [69]. For this modeling scenario, a selection 
of temperature, precipitation, wind, and solar radiation variables were selected from the 
B2 data set and combined with two continuous soil parameters from the STATSGO 

These were used to incorporate measures of known ecological factors that promote 
spore survival. Elevation also was included in this coverage set. It was assumed for this 
study that these soil values would not change significantly in the 50-year period. Both 
soil variables were rasterized for inclusion in the ENM. All data for this coverage set 
were resampled to 0.5 degrees (the resolution of the HADCM3 data) and clipped to the 
contiguous United States.  
 
 

data set (soil moisture, soil pH; www.ncgc.nrcs.usda.gov/products/ datasets/statsgo). 
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4.3.3. Modeling Parameters  

For modeling the current distribution scenarios, 177 spatially unique anthrax-outbreak 

selected, independent hold-out sample of ~25% (n = 47) of the original data was 

4.3.4. Model Accuracy Metrics 

An area under the curve (AUC) in a receiver operating characteristic (ROC) analysis 
was used to evaluate the predictive performance of the 10-best model subset using 
measures of specificity (absence of commission error) and sensitivity (absence of 
omission error) following other GARP studies [66, 71]. The ROC analysis is a threshold-
independent assessment of model quality derived from a plot of sensitivity (true positive 
rate; y-axis) versus 1 – specificity – (error or true negative rate; x-axis) constructed 
from the best subset to determine whether models are predicting better than random 
[72, 73]. Likewise, AUCs, as employed here, are based on all pixels of presence and all 
pixels of absence. The AUC of a given model set is compared with that of a random 

Two measures of omission were calculated from the 10-best model subset and the 
independent test data [66]. First, total omission was calculated as the total number of 
independent test points predicted absent by the summated grid of all ten best models. 
Second, an average omission was calculated as the average omission across each of the 
ten best models. Omission indices are useful for evaluating the success of GARP at 
predicting known localities not included in model building. Two commission indices 
also were developed. First, total commission was calculated as the total number of 
pixels predicted present across all ten models divided by the total number of pixels in 
the study area. Second, an average commission was calculated as the average of the 
total number of cells predicted present divided by the total number of pixels within the 
study area on a model-by-model basis for each of the ten models in the best subset. 
Little difference between these two measures indicates little variation in the rule sets 
across the models, whereas a large difference indicates high variation across the models. 

(n = 130) was used for model building. A training/testing partition (50%/50%, respectively) 
internal to DG was used for model building. To maximize DG performance, 1,000 
models were developed and the best subset procedure was employed to select the 20 
best models under a 10% hard omission threshold and a 50% commission threshold for 
a final 10-model best subset. The final 10 models were summated within the GIS to 
visualize the geographic areas of presence/absence predicted across the best subsets.  

The same parameters were selected for the future modeling scenario. However, 
given the larger pixel size of the ecological coverages, only 57 sampling sites were 
used to build the model. A post hoc sample of 27 points was used to calculate accuracy 
metrics for the future scenario. 

withheld for later calculation of accuracy metrics. The remaining ~75% of the data

prediction using a z-test. Successful models have AUC scores approaching 1.0  
(a perfect model or a measure of reality); the higher the AUC score, the better the 
model is predicting presence/absence. Models predicting no better than random will 
have an AUC approaching 0.5 [74]. The ROC was derived from the 25% independent 
test data points withheld from the original GARP model-building data sets [66].  

locations were available for model building (Table 1). Before initiating DG, a randomly 
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5. Ecological Niche Modeling Modeling Scenarios of Bacillus anthracis in North 
America  

5.1. Modeling Scenario 1: Modeling the Current Distribution of Bacillus anthracis  
in the United States  

Blackburn et al. [4] provided the first ENM-based geographic predictions for the 
potential distribution of B. anthracis for the lower 48 states. That modeling scenario 
was based on a six-variable niche definition and included two soil parameters (soil 
moisture content and soil pH). These parameters are not available for Mexico, so to 
project the geographic distribution of an unknown data set, it is necessary to construct 
models for both countries with the same ecological parameters. This required the 
development of a modified coverage set that included variables available for both 
countries. 

Results from the first modeling effort for B. anthracis [4] indicated that mean 
NDVI was the most limiting variable in the rule set. For this chapter, I provide a five-
variable coverage set to define the ecological niche for B. anthracis. Soil parameters 
were removed from the coverage set and replaced with an additional NDVI variable – 
annual amplitude [68]. 

The U.S. model predicted the known distribution of outbreaks with high predictive 

 
Figure 5. The potential geographic distribution of Bacillus anthracis for the contiguous United 
States based on a five-variable ecological niche modeling experiment using the GARP modeling 
system. The grayscale ramp indicates model agreement among the ten best models in the subset. 
Minimum threshold for the acceptable model agreement was set at five models. 

5.1.1. Model Results 

accuracy (Fig. 5), with 95.6% of the independent test points predicted correctly and 
a statistically significant AUC score of 0.823 (Table 3), both indicating that the ecological  
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niche models are accurate [66]. The geographic distribution was similar to that of 
Blackburn et al. [4], with a south-to-north corridor from southwest Texas to north-
western Minnesota, then westward across the Dakotas, through much of Montana, and 
through the Snake River drainage. A second east-to-west corridor, though patchier, is 
present from west Texas through southern Arizona, with a disjunct area predicted in the 
Californian Central Valley. The results of this geographic prediction based on a five-
variable niche definition are consistent with that of Blackburn et al. [4]. 

TABLE 3. Accuracy Metrics for the U.S. GARP Models Based on Current Climatic Conditions 

Metric Model specifications 
Mexico scenario   
     N to build models 130* 
     N to test models (independent) 47 
     Total omission 4.40% 
     AUC 0.832†‡ 
HADCM3 B2 scenario (present day)   
     N to build models 57* 
     N to test models (independent) 27 
     Total omission 0.0% 
     AUC 0.846§|| 
AUC, area under the curve. 
*N was divided into 50% training/50% testing at each model iteration. 
†z = 10.31 (p < 0.01). 
‡ SE = 0.0367. 
§z = 8.55 (p < 0.01). 
||SE = 0.0471. 

 
For this study, models were developed with point occurrences and coverages that 

represent the contiguous United States in the current time period (~1950–2000). Accuracy 
metrics are used to test these current models with post hoc validation points of known 
outbreaks in the U.S. to evaluate the quality of the projections onto the Mexican and 
future U.S. climate scenarios. 

Following the Grinnellian definition of the niche, no two species can occupy the same 
niche. Because of this, it is important to conceptualize how the niche for the disease 
agent is defined when occurrence data were dependent on either livestock or wildlife 
outbreaks. In one such disease study, Peterson et al. [38] evaluated the potential geo-
graphic distribution of sylvatic Trypanosoma cruzi, the parasite that causes Chagas 
disease, across Mexico. In that study, Peterson et al. [38] suggests that the potential 
geographic distribution was likely at the intersection of the reservoir species (Neotoma 
wood rats) and the Triatomine insects that vector the parasite. To develop models, 
Peterson et al. constructed individual niche modeling experiments for each rat species 
and each insect species and then overlaid them in a GIS to identify potential areas of 
overlap where reservoirs and vectors might interact. Although this process was 
laborious, it adheres to the Grinnellian niche definition. 

5.1.2. Evaluating Scenario 1 Relative to White-Tailed Deer, a Primary Wildlife Host 
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Figure 6. The known distribution of white-tailed deer (Odocoileus virginianus) for the 
contiguous United States is shown in gray. In total, this represents 81.9% of the total U.S. 
landscape. The black shading indicates the portion of white-tailed deer distribution that overlaps 
with the potential distribution of Bacillus anthracis (~35.9% of the total deer landscape), 
illustrating the drastically reduced portion of the landscape where the pathogen and host species 
might naturally overlap. 

In the study of B. anthracis, where a specific vector is not required to transmit the 
disease (flies most likely serve as secondary vectors once an outbreak has started), it is 
important to determine whether or not the models reflect the potential distribution of 
bacterium or the host species. To test this hypothesis, I compared the geographic area 
predicted by the B. anthracis model to the known distribution of the white-tailed deer, 
O. virginianus. The published range distribution for deer was downloaded from the 

lower 48 states to match the extent of the modeling experiment. I then converted  
the range limit for deer to a raster file and recoded those pixels representing the deer 
range to a value of 1. I then set a threshold limit of five or more models for the  
B. anthracis best subset and recoded presence to a value of 1 and used map algebra to 

The deer range accounted for 81.9% of the total landscape of the lower 48 states. In 
contrast, the area where B. anthracis and white-tailed deer overlap accounts for only 
35.9% of the total deer range. This suggests that the GARP modeling process is not 
biasing the B. anthracis distribution to the larger extent of its host species. Likewise, a 

proxy for B. anthracis, it would have excluded the areas successfully predicted (and 
validated) across Nevada and California, suggesting that the deer distribution was not 
limiting the B. anthracis model. This suggests that the modeled geographic potential of  

add the two raster files together. The overlap of the two species is presented in Fig. 6. 

comparison of Figs. 5 and 6 shows that, had only the deer distribution been used as a 

NatureServe Web site (www.natureserve.org) [75] and clipped to the extent of the 
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5.2. Modeling Scenario 2: Projecting the Distribution of B. anthracis to Unknown 
Landscapes 

Although the specific timing and location of the introduction of anthrax into the United 
States is still not fully understood [76], recent genetic data suggest a relationship 
between the North American sublineage and the dominant European subgroup, which 
supports a European introduction [77]. There are data on the distribution of anthrax in 
Canada [9, 21] and the contiguous United States [4]; however, comparable data on 
anthrax outbreaks are especially lacking for Mexico despite historical reports of anthrax 
as far back as 1923 [78]. Although Mexico participates in country-level livestock 
reporting to the Organisation Mondiale de la Santé Animale on an annual basis, the 
specific geographic distribution of B. anthracis throughout the country remains unknown, 
under-reported, and poorly understood [79]. With the exception of limited reports from 
the state of Zacatecas in 1981 and 1983 [80], a report from ProMED Mail [81], and two 
municipalities in the state of Nuevo Leon, even aggregated data at regional levels are 
lacking in Mexico’s reporting efforts [82]. The border area between Mexico and the 
United States is already known to be susceptible to anthrax, with the disease being 
endemic in western and central Texas [3] and predicted to occur along the Arizona and 

with wild populations of white-tailed deer, O. virginianus [12]. These deer have the 
potential to move freely throughout the cross-border Tamaulipan/Mexquital ecoregion. 
Given the shared U.S./Mexico border and the high likelihood of international cross-
border transmission, it is critical to determine the distribution of anthrax in Mexico. 

To develop model results for Mexico, I modeled the distribution of B. anthracis for 
the contiguous United States using Modeling Scenario 1 above. I elected to use the 
GARP modeling system specifically because it allows the user to develop a model for 
an area with known occurrence data and then project those model rule sets onto the 

because it prevents Mexican localities from being included explicitly as pseudo-
absences, as would be the case if both countries were modeled in a single experiment 
using only U.S. outbreak data.  

5.2.1. Model Results 

is present along the U.S. border near central and western Texas, central Arizona, and 
south central California. In each of these locations, the distribution in Mexico is 
predicted to be a southward continuation of predicted areas in the United States Beyond 
the border regions, the prediction reaches south into central Mexico as far as the state of 
Puebla. Although limited data were available to validate the model results for Mexico, 
the model accurately predicted the area surrounding a farm with laboratory-confirmed 

B. anthracis is not simply capturing the distribution of the host species and more likely 
illustrates environments that support spore survival. This also supports the suggestion 
by Blackburn et al. [4] that these B. anthracis models likely indicate surveillance 
priorities for deer that are meaningful (i.e., the area of overlap in Fig. 6). 

geography and environmental layers of another region (see Fig. 2). This is important 

California borders (see Fig. 5). In Texas, the greatest numbers of cases are associated 

The projected distribution of B. anthracis in Mexico (Fig. 7B) suggests that the disease 
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livestock cases in the year 2000 (Hugh-Jones, unpublished data), the region of Nuevo 
Leon described in Siefert et al. [82], and much of the state of Zacatecas [80]. In this 
latter account, no specific data are provided on the region of the state that reported the 
outbreaks. The only published report not predicted by five or more models in the best 
subset is the south central state of Michoacan reported on ProMED-mail [81]. As with 
the reports from Zacatecas, there is limited information available on the specific region 
within the state where the outbreaks occurred.  

 

The predicted distribution of anthrax in Mexico suggests that B. anthracis is 
present in adjoining areas where the United States has reported outbreaks in recent 
years [3, 4]. For example, the northern region of Coahuila De Zaragoza and Nuevo 
Leon [82]) joins with the southwestern Texas border, where wide-spread epidemics in 
white-tailed deer, farmed exotic wildlife, and livestock have been frequent [12]. Both 
sides of the border are predicted to sustain the disease. This suggests that anthrax 
control efforts in the United States alone are not sufficient to prevent future outbreaks 
or protect either Mexican or U.S. livestock or wildlife interests. 

Figure 7. A. GARP prediction for the distribution of Bacillus anthracis in the U.S. based on 
outbreak data from 1957 to 2005. Open circles represent training data used for model building; 
gray circles represent the independent post hoc data for calculating accuracy metrics. Includes 
the projection onto Mexico. B. Close-up of the predicted distribution of B. antrhacis in Mexico. 
Star indicates the location of a laboratory-confirmed anthrax outbreak in 2000. Gray-outlined 
states indicate limited data from the literature that identify areas with known outbreak histories. 
Grayscale ramp indicates model agreement from the ten-best model subset. A five-model thres-
hold is used to visualize predicted presence to balance between overfitting and overpredicting of 
the model set. This five-model threshold for mapping limits the between-model variability 
resulting from stochastic effects of the modeling process. 
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5.3. Modeling Scenario 3: Predicting the Distribution of Bacillus anthracis  
in the United States in 2050 

Climate change has become an important topic in the ecology community and the field 
of spatial epidemiology. This is evident in a recent Scientific and Technical Review by 
the Organisation Mondiale de la Santé Animale [83] dedicated to the topic of climate 
change and animal diseases, complete with several article on the effect of climate 
change on disease distributions. As a preliminary effort to evaluate the potential 
changes in the geographic distribution of B. anthracis in the contiguous United States,  
I developed a model of the organism under current climatic conditions and future 
climatic conditions using the HADCM3 B2 scenario. 

A large body of literature supports that species have the potential to conserve 
ecological niches over evolutionary time scales [84–86]. Although it would be ideal to 
develop the U.S. models of B. anthracis by genetic lineage [4], the modeling efforts of 
Blackburn et al. [4] and illustrated here suggest that B. anthracis has established a 
natural ecology in the United States, and the modeling results show a high degree of 
predictive accuracy, including the ability to exclude some spurious data in the modeling 
phase. Blackburn et al. [4] show that GARP was sensitive to an outbreak in Oklahoma 
in 1957 that Van Ness [87] reports was likely from road maintenance that disturbed 
soils or more likely a food-borne outbreak in animal feed [4]. Given the conservative 
nature of the GARP rule sets across models for B. anthracis and that anthrax remains a 
reccurring disease on the American landscape despite control and vaccination efforts 
[6], I feel it is safe to assume B. anthracis will have niche requirements o similar to 
today’s in 2050. 

5.3.1. Model Results 

Similar to the efforts for projecting the Mexican distribution, I used the current U.S. 
environmental variables and point data from recent outbreaks to build and test a model 
set to project onto the future climate data set. Accuracy metrics for this current-day 

shows the distribution of B. anthracis using the current climatic conditions from the 
HADCM3 data set. Although pixel sizes were quite large relative to the U.S. model 
presented in scenario 1, the overall geographic distribution is fairly similar, with a 
dominant south-to-north corridor through western Texas into the Dakotas and 
Minnesota and westward to the Snake River Drainage. A second east-to-west corridor 
exists across southern New Mexico and Arizona, with a disjunct portion of habitat in 
the California Central Valley. 

the south-to-north corridor is still visible, there is an apparent gap in northern Texas, 
with more loss of spore-promoting habitat in southernmost Texas. To illustrate this 
better, I recoded presence and absence for both the current-day prediction and the 
future projection using the classification. I selected a threshold of six or more model 
agreement from the best subset of each time period and recoded all values of six or 
more to a score of 1 to define presence in the current-day models and a score of 4 in 
the future models. In the current-day model, values of five or less were scored as a zero; 

model indicate models with low omission and high AUC scores (Table 3). Figure 8A 

Figure 8B illustrates the potential distribution of B. anthracis in 2050. Although 
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Figure 8. A. The potential geographic distribution of Bacillus anthracis in the contiguous United 
States based on a nine-variable ecological niche modeling experiment based on current climatic 
conditions from the HADCM3 B2 future climate scenario. B. The potential geographic 
distribution of B. anthracis in 2050 using the future climate data from the HADCM3 B2 climate 
scenario. A threshold of six models or better was selected to visualize these analyses. 
 
in the future model, agreement of five or less was scored as a 1. I used raster algebra in 
the GIS to subtract the future scenario from the present scenario to evaluate areas of 
predicted overlap, habitat loss, and habitat expansion over the next 50 years. This 
provides four possible scores. A score of –1 indicates that both time periods predict 
those pixels as absent. A score of –4 indicates a habitat expansion, where B. anthracis 
is predicted in areas not predicted under the current-day model. A score of 0 indicates 
that B. anthracis is present in the current-day model and that habitat that supports 
spores has been lost. A score of –3 indicates that the species is predicted present under 

5.3.2. Regional Changes 

Although the HADCM3 is based on a global temperature increase of 2.1–3.9°C, 

predicted distribution of B. anthracis for the present day does not change in 2050. 
Another 39.6% of the landscape was not predicted as suitable in either of the 
predictions. There was a 6.09% loss of suitable environment from these experiments 
from present day to the future, with only a 3.57% expansion of habitat in the future data 

both climate scenarios. Figure 9 illustrates the differences in the two time periods. 

changes in the species’ distribution shown in Fig. 9 are regional. Overall, 50.7% of the 
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set, for a total loss of 2.52% of the landscape no longer suitable for B. anthracis 
survival. Because these projections cannot be validated with field data for another 47 
years, speculation must be tempered with caution. However, there are some interesting 

 

Figure 9. Spatial patterns of habitat expansion and loss between the current time period and 2050 
for Bacillus anthracis from a GARP modeling experiment. Expanded habitat is present in 2050 
but not in the current time period. No change indicates predicted presence in both the current and 
future model outputs. Not suitable indicates absence of B. anthracis habitat in both modeling 
experiments. Habitat loss indicates habitat that was predicted as present in the current scenario 
and excluded from the future scenario. 

 
There is minimal geographic change between the two time periods in the Dakotas 

region. In contrast, much of the southern and southwestern parts of Texas are reduced 
from the present day to 2050. This shows a geographic change in the environment and 
the potential extirpation of B. anthracis from the southern portion of its U.S. range. 
This is interesting because the largest number of outbreaks and large numbers of 
individual animals have been reported in Texas [4]. At the relatively low latitude of 
southern Texas, it is likely that the increase in temperature and solar radiation may 
increase soil temperature beyond the physiological limits of the spores. 

It is interesting to consider what might happen in the northern end of the predicted 
range, where any spatial expansion would be minimal. A number of studies on climate 
change in the Midwestern states have documented increases in winter air temperature 
[88], early arrival of spring temperatures [89], and earlier greenup periods in spring 
[90]. In the case of B. anthracis across the southern states, this scenario could suggest a 
reduction of the geographic range and a subsequent reduction in outbreaks as the 

spatial patterns on the map in Fig. 9.  
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environment becomes unsuitable for spore survival. In the northern states, the models 
suggest a minimum amount of spatial expansion or contraction on the landscape, but 
earlier springs with longer growing seasons and warm periods might increase the number 
of outbreaks or the length of anthrax season. Isard et al. [88] also notes colder soil 
temperatures during the relatively shorter winters, but, given the frequently recurring 
outbreaks of anthrax in wood bison at much higher latitude [21], it is difficult to 
imagine that cooler soil temperatures would have a drastic effect on spore survival. 

6. Conclusions and Future Directions 

This chapter attempts to present a number of spatial analytical techniques within a 
larger theoretical framework of how to employ these techniques to advance spatial 
epidemiology and disease ecology. The techniques presented here are relatively easy to 
execute in the software applications introduced in the pages of this chapter. However, it 
is necessary to understand the limitations and underlying ecological or statistical theory 
that supports the results of an analysis. As an example, the body of literature on ESDA 
is only in its second decade. There are a number of research opportunities in determining 
the usefulness of several local measures of autocorrelation and their application to real-
world epidemiological data sets such as those presented here looking at fly distributions 
and clusters or anthrax outbreaks. Likewise, the definition of the ecological niche is in 
no way static. Although those definitions first posed by Johnson [49], Grinnell [50], 
Hutchinson [51, 52], and MacArthur [53] and updated through a large body of literature 
(see Chase and Leibold [55]) have been circulating in the literature for nearly a century, 
there is a great deal of work to be done to better define niche variability, niche seasonality 
and niche competition and on how to incorporate more information on biotic interactions 
into the spatial-modeling process reviewed here, particularly as it pertains to pathogens 
and disease transmission. 
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