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a b s t r a c t

We analysed livestock anthrax in Kazakhstan from 1960–2006, using a prospective CUSUM
to examine the affects of expectation on the detection of spatio-temporal clusters. Three
methods for deriving baselines were used for CUSUM; a standard z-score, AVG, a spatially-
weighted z-score derived from Local Moran’s I, LISA, and a moving-window average,
MWA. LISA and AVG elicited alarm signals in the second year that did not return below
threshold during the 47-year period, while MWA signaled an alarm at year four and relented
at year fifteen. The number of spatial clusters elicited varied: LISA n = 16, AVG n = 11, and
MWA n = 3, although there were clusters present around Shymkent, in south-central
Kazakhstan, in each method. The results illustrate that the selection of a baseline with an
unknown background population has a significant effect on the ability to detect the onset
of clusters in space and in time when employing a CUSUM methodology.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The most common techniques for examining the pres-
ence of spatial or spatio-temporal clusters are retrospective
analyses, which are often carried out as a onetime analysis of
past data, after the onset, and often after the completion of
an outbreak (Tango and Takashi, 2005). The prevalence of
these techniques in the literature provides a valuable refer-
ence resource for analysing the spatial (Moran, 1950; Ans-
elin 1995; Ord and Getis, 1995; Kulldorff, 1997) and/or
temporal distribution (Knox, 1964; Mantel, 1967; Wallen-
stein, 1980) of past health events.

Yet, in human and veterinary epidemiology the objec-
tive is often to detect the onset of health events as quickly
as possible. Statistical applications that allow for the con-
tinual evaluation of a disease status over time are advanta-
geous since they may be able to identify the onset of
. All rights reserved.
clusters in a timelier manner. In this area of health analy-
ses retrospective techniques may incur specific limitations
due to issues of multiple hypotheses testing that occur
when these methodologies are used to measure a disease
status continuously over time (Tango, 2000). Alternatively,
prospective statistical techniques such as the cumulative
sum (CUSUM) approach (Page, 1954), originally developed
for process control, can be used in a continuous detection
system to monitor the status of disease over time in an at-
tempt to detect the onset of clusters (Rogerson, 1997). A
more comprehensive review of prospective techniques
has been described elsewhere (Sonesson and Bock, 2003;
Woodall et al., 2008).

For the purposes of this study we are particularly inter-
ested in the application of clustering techniques used in
the monitoring of veterinary health. The application of
space–time clustering using both retrospective techniques
(Carpenter et al., 1996; Hoar et al., 2003; D’Orazi et al.,
2007) and prospective techniques (Mostashari et al.,
2003; Hohle et al., 2009) has been shown to be successful
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in research examining the spatial and temporal distribu-
tion of diseases in veterinary epidemiology. A study by
Ward et al. (1996) found clustering of bluetongue virus
serotypes among cattle herds in Queensland, Australia
using the Cuzick and Edward’s test. Research using retro-
spective space–time clustering techniques in the investiga-
tion of acute respiratory infections in cattle suggests that
the identification of clusters link multiple illnesses to a sin-
gle pathogen (Norstrom et al., 2000). Several studies have
also utilized the SaTScan software to retrospectively iden-
tify the clustering of bovine spongiform encephalopathy in
cattle (Doherr et al., 2002; Sheridan et al., 2005; Allepuz
et al., 2007; Heres et al., 2008). Ward and Carpenter
(2000) and Carpenter (2001) provide reviews of additional
methods used to investigate the distribution of health
events in veterinary epidemiology.

In the field of prospective surveillance Rogerson (1997)
employed a one-sided CUSUM approach using a modified
Tango’s statistic to reanalyse data from Williams et al.
(1978) in order to identify the presence of emerging
space–time patterns of Burkitt’s lymphoma in Uganda. This
study found the CUSUM method detected the emergence
of additional clusters previously unidentified by retrospec-
tive analyses. Research applying early detection methods
in livestock surveillance incorporated a log-linear regres-
sion method to derive expected counts from a baseline
dataset, which was constructed using historical case re-
cords, in order to elucidate anomalies in the distribution
of Salmonella spp. infections (Kosmider et al. 2006). Addi-
tionally, Gilbert et al. (2005) illustrates the efficacy of the
monitoring of livestock diseases by deriving model param-
eters from historical data, in conjunction with biotic and
abiotic variables to predict a shifting geographic distribu-
tion of Bovine Tuberculosis (BTB) on a yearly basis. Like
in the aforementioned case of BTB there is a crucial need
to monitor other zoonotic livestock/wildlife pathogens
(those transferrable from animals to humans) such as an-
thrax that threaten not only animal populations, but hu-
man populations as well.

Bacillus anthracis, the causative agent of anthrax, is a
gram-positive spore-forming bacterium, that affects live-
stock and wildlife (primarily herbivorous ungulates), and
secondarily humans (Van Ness, 1971). Outbreaks of the
disease in Central Asia, including Kazakhstan (Woods
et al., 2004), have increased in recent years due to inade-
quacies in public health and veterinary surveillance
(Hugh-Jones, 1999).

Several studies have described the spatial and temporal
distribution of anthrax infections in livestock (Dragon
et al., 1999; Turner et al., 1999; Parkinson et al., 2003;
Clegg et al., 2007; Himsworth and Argue, 2008; Mongoh
et al., 2008). Van Ert et al. (2007) showed through mapping
the phylogeography of B. anthracis that its global distribu-
tion may be influenced by its genetic variation. Research
has also used GIS mapping in conjunction with ecological
niche modeling to predict the potential geographic distri-
bution of B. anthracis in the US (Blackburn et al., 2007)
and in Kazakhstan (Joyner et al., 2010). However, few of
these studies have applied spatio-temporal techniques to
quantitatively describe the distribution of anthrax infec-
tions. This is also true in research looking at human infec-
tions of the disease, which have either focused on, the
bioterrorist event in the US in 2001(Jernigan et al., 2002;
Webb and Blaser, 2002), syndromic studies related to po-
tential bioterrorism (Kleinman et al., 2005; Buckeridge
et al., 2006), or the accidental release of weaponized an-
thrax in Sverdlovsk, Russia in 1979 (Meselson et al.,
1994; Wilkening, 2006).

The few studies that have utilized spatio-temporal sta-
tistical techniques to analyse the distribution of anthrax
infections have illustrated the potential usefulness of these
tools. Initial research by Smith et al. (1999) identified three
anthrax isolates responsible for wildlife epidemics in Kru-
ger National Park (KNP), South Africa and found using the
Mantel’s test they were clustered in both space and time.
A subsequent study by Smith et al. (2000) indicated
through the use of SaTScan that there was distinct spa-
tio-temporal clustering of two major anthrax strain types,
A and B within KNP, due to possible differences in soil com-
position that may have exerted an influence on the loca-
tion of each strain. Current research on the distribution
of anthrax outbreaks is limited to retrospective analyses
allowing for the implementation of prospective methodol-
ogies to add to the current body of anthrax literature.

The purpose of this current study was to conduct an
exploratory analysis of the spatial and temporal distribu-
tion of historical anthrax outbreaks among livestock in
Kazakhstan utilizing a prospective CUSUM approach. Spe-
cifically this study had two objectives: (1) examine the
methods for deriving a baseline rate of disease for use in
a CUSUM methodology when no population data are avail-
able and (2) to evaluate the influence that various derived
expectations of disease have on the detection of clusters in
space and time in an annual CUSUM methodology. This
study represents one of the first prospective statistical
examinations of anthrax in livestock.
2. Methodology

As part of a larger effort to map and model the geo-
graphic distribution of anthrax and its control in Kazakh-
stan, the Kazakh Science Center for Quarantine and
Zoonotic Disease developed a spatial database of database
totaling 3963 outbreaks that were reported over a 74-year
period from 1933–2006 (Aikembayev et al., 2010). This
current study employs a selection of that historical record.
A subset of the data representing livestock outbreaks (a
combination of small and large ruminant outbreaks) be-
tween 1960 and 2006 comprised of 2920 outbreaks was
selected for analyses in order to analyse the distribution
of anthrax positive outbreaks from the post-vaccination
time period. For the purposes of this study an outbreak
was defined as a location that reported one or more posi-
tive confirmations of an infection of anthrax in livestock.

In order to derive baseline expectations for analyses
using CUSUM an additional subset of the data representing
outbreaks from 1950 through 1959 were selected. This
subset of data was employed to calculate baseline values
using a moving-window average and a standard z-score
technique (Fig. 1). A subset of data from this period was
necessary since the calculation of baseline rates from, for



Fig. 1. Total number of anthrax outbreaks by year, among livestock, in Kazakhstan. Grey coloured bars indicate a subset of data that was not used in this
study 1933–1949 and the green coloured bars represent subset of data that were used in part to calculate expected values 1950–1959 but were not
incorporated spatially into the analyses. Red coloured bars portray the subset of the data that was used in the analyses representing outbreaks from the
post-vaccination time frame 1960–2006. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.).
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example, the year 1960 would require the inclusion of case
numbers from previous years. The locations and dates of
the livestock outbreaks were provided as latitude/longi-
tude coordinate pairs georeferenced to the nearest com-
munity (Fig. 2). Outbreak locations were then aggregated
to 174 administrative rayons (region or county equivalent)
by year using Hawth’s Tool point-in-polygon count (Beyer,
2004). This provided forty-seven fields of data representing
the total number of outbreaks per rayon for each year from
1960 to 2006.
2.1. Prospective analysis

Examining the emergence of disease clusters on a con-
tinuous basis in both space and time may allow for a more
rapid evaluation of disease status. The CUSUM technique
measures sequential deviations from an expected mean
of a variable over time, in an attempt to represent events
of the variable that might require immediate attention. In
order to implement an annual CUSUM approach the free-
ware software package GeoSurveillance 1.1 (Rogerson
and Yamada, 2004) was used. The one sided univariate
cumulative sum (CUSUM) statistic that was implemented
in GeoSurveillance requires a standardized z-score as the
input variable and is written following (Rogerson, 1997):

St ¼ max ð0; St�1 þ Zt � kÞ

where St is the summation of all events from the z-score Zt

that deviate more than k standard units from a mean and
are accumulated over time. When the accumulation of St

over time crosses a pre-designated threshold h an alarm
signal is triggered indicating an emerging cluster of out-
breaks. Alarm events in a CUSUM methodology in this in-
stance are monitored using a control chart that analyses
a process compared to a critical h. Events that are sum-
mated in excess of h are deemed to be an out of control sig-
nal (exceeding a threshold) while events that fall below h
are deemed to be an in control signal (below a threshold).
The selection of h is based on the average run length (ARLo)
or the amount of time that is desired between false alarms
(spurious signals above baseline). For example, in an an-
nual study an average run length of 100 would signify that
on average a false alarm is triggered every 100 years (Rog-
erson, 1997). A value of k = 0.5, as in this case, is often cho-
sen to minimize the amount of time required to achieve an
alarm signal and represents one-half of the total deviation
from the mean that is to be registered (Rogerson, 1997).

In this study two different average run lengths were
used to evaluate the signaling sensitivity of emerging an-
thrax outbreaks on an annual basis during the time period
1960–2006 (total of 47 years) and to also assess the effect
that varying target values provided in the form of z-scores
would have on the performance of the control chart. The
first CUSUM evaluation used an arbitrary ARL of 100 years
and was adjusted for multiple testing using a Bonferroni
correction (# of Regions � ARL) resulting in a value of
h = 7.9. The second CUSUM evaluation set the probability
of a false alarm occurring in the study period of n observa-
tions at 0.1 and employed an ARL that was derived using
the equations set forth in (Rogerson 2001):

1� expð�ð# of outbreaksÞ=ARLÞ ¼ 0:1

The equation produced an average run length of 27,705.
The ARL of 27,705 was adjusted for multiple testing using a
Bonferroni correction (ARL � number of regions) resulting
in a value h = 17.4.



Fig. 2. Location of anthrax positive infections in livestock across Kazakhstan from 1930–2006 consisting of 3963 outbreaks. Grey points indicate anthrax
positive outbreaks during the time period 1930–1949, green dots represent outbreaks during the time period 1950–1959, and red dots portray outbreaks
from the post-vaccination time period 1960–2006. Map symbol colours match the colours used in the histogram of outbreak numbers in Fig. 1. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.).
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2.2. Evaluating the effects of expectation on CUSUM

Choosing a baseline rate of disease in livestock epide-
miology is a crucial step in locating areas of high case
numbers. This is especially true in endemic regions with
little knowledge of the underlying population at risk.
Since selecting a level of disease expectation will
strongly influence the response of public health and vet-
erinary management to a health event, multiple scenar-
ios should be examined. Due to a lack of livestock
population data that corresponds to the village-level out-
break data, there was no inherent expectation associated
with the livestock contracting anthrax. Therefore, using
models that implemented a standard observed and ex-
pected calculation of z-scores was less suitable for this
data. In order to gain an understanding of how disease
expectation would affect the CUSUM control charts vary-
ing degrees of expectation were derived. Standardized z-
scores used as input variables in GeoSurveillance 1.1
were obtained using three different methods. Each differ-
ent methodology employed here was used to substitute
for a baseline level of disease presence for each year dur-
ing the 47-year period.
2.2.1. LISA-based calculation of expectation (LISA)
Instituting a baseline expectation from administrative

aggregations may, in some instances, be inappropriate
since the occurrence of disease often does not stop at arbi-
trary administrative boundaries. Therefore, incorporating
analyses that take into account the spatial relationship
among neighboring regions in the calculation of a baseline
disease rate may provide a more accurate assessment of
expectation. The first methodology, referred to as LISA
from here on, employed the use of the retrospective Local
Moran’s I statistic used for measuring local spatial autocor-
relation (Anselin 1995). This test evaluates the existence of
spatial autocorrelation or local clusters by examining the
contribution of a rayon to the global autocorrelation Mor-
an’s I statistics for the entire country. The statistic was
implemented in GeoDa 0.9.5-I (Anselin et al., 2006) using
a Queen contiguity matrix, and 999 permutations at an
a < 0.05.

LISA calculations were performed a total of 47 times,
once for each year. The resulting output provided stan-
dardized z-scores for all rayon across the time period. Stan-
dardized z-scores were computed using the Local Moran’s I
Statistic following Anselin (1995):
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ðEÞ; E½Ii� ¼ �wi=ðn� 1Þ

ðSÞ;S¼wið2Þðn�b2Þ=ðn�1Þþ2wiðkhÞð2b2�nÞ=ðn�1Þðn�2Þ
�w2

i =ðn�1Þ2

for each statistic Ii the expected value (E) is divided by the
square root of the variance (S). Computing z-scores in this
manner explored the use of consecutive retrospective anal-
yses in a CUSUM methodology. The application of this sta-
tistic did not include any controls for population or herd
density.

2.2.2. Expectation based on the average number of outbreaks
(AVG)

Often times epidemiological investigations into a dis-
ease outbreak will uncover a temporal relationship. Deriv-
ing the expectation of disease from a temporal component
may therefore be a useful technique in establishing a base-
line rate. In this case z-scores were derived using the sec-
ond methodology, referred to as AVG from here on, that
incorporated a calculation based on the average number
of outbreaks for all rayons in a specific year. Calculations
were made comparing the outbreaks within a given rayon
to the average and the standard deviation of all outbreaks
for each time period. This provided time specific z-scores
for each rayon based on the average number outbreaks
for each year and its contribution to the average. The meth-
odology presented here allows for the baseline rate of dis-
ease to be based on a temporal component and a
comparison of the global average of the study area.

2.2.3. Moving-window average calculation of expectation
(MVA)

Comparing the historical persistence of outbreaks to the
current disease status on a region-by-region basis may al-
low for the more accurate determination of a disease pres-
ence. Regions, or rayons in this case, that show a high level
of temporal endemicity may require a higher expectation
of disease compared to rayons with a sporadic or non-exis-
tent presence of the disease. The third calculation of z-
scores, referred to as MWA from here on, used a moving-
window average methodology that compared the number
of outbreaks in a rayon back to itself, rather than other ray-
ons (as in AVG calculations), in a single time period.
Adjusting for the lack of population homogeneity in this
case can be achieved by conditioning the total number of
outbreaks observed to calculate the expected number of
outbreaks for each location (i) a form of indirect adjust-
ment (Ward and Carpenter, 2000). Therefore, in this in-
stance a moving average was applied to the data to
construct an expected value. The expected value for a ra-
yon at a specific time period was based on the average
number of outbreaks from the previous � number of years
in that same rayon. The calculation used was (e.g. for
3 years):

Expyi ¼
yi� 1þ yi� 2þ yi� 3::::yi� N

3::::N

where Expiy is the expected value for a rayon i with x num-
ber of outbreaks at time y. Calculations of expected values
using the MWA method were performed for the previous 1,
2, 3, 4, 5, 6, and 10 years. The expected values obtained
from the previous calculation were then used along with
the observed number of outbreaks to compute z-scores
using the following standard formula (Lee et al., 2007):

Zi ¼
ffiffiffiffiffiffiffiffi
obs
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
obsþ 1

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 expþ1

p

The corresponding expected values were used to calcu-
late z-scores for each MWA and then incorporated into a
CUSUM model. Selection of a MWA time range of ten years
was selected based in part on the fact that it produced
higher max CUSUM values.
2.3. Z-score distribution

In order to visualize potential differences in the distri-
bution of values between methodologies, z-scores from a
single year, 1960, were displayed graphically. A graph
was created that displayed the range of z-scores for the
MWA, LISA, and AVG methodologies using outbreak data
for the year 1960. In this approach the direction and mag-
nitude of the deviation from the mean is visible for each
methodology and each rayon during a single year.
3. Results

3.1. Prospective analysis

The CUSUM analysis using an ARL of 100 (h = 7.9),
shows the spatial relationship of each of the three different
methods for calculating z-scores MWA, AVG, and LISA dur-
ing the period 1960–2006 (Fig. 3). During the 47-year per-
iod the MWA methodology had the lowest number of
rayons eliciting alarm signals n = 3, while the LISA method-
ology showed the highest number of rayons with alarm
events n = 16 and the AVG methodology had n = 11 rayons
signal an alarm. The presence of alarm events was consis-
tent across all three methodologies in the rayons of South-
ern Kazakhstan near the city of Shymkent, where the same
two rayons signaled alarms events. Additionally, an emerg-
ing cluster was identified in a single rayon to the west of
Almaty, which signaled an alarm event using all three
methods. Furthermore, there was also a similarity in the
spatial distribution of the AVG and LISA methodology.
The spatial distribution of rayons signaling alarm events
in those two methods were around Shymkent, to the west
of Almaty, and the south of Semipalantisk with a few sig-
nals west of Aqtobe.

Temporal results portraying the control chart for the
initial CUSUM analysis (h = 7.9) showed that all three
methods for calculating z-scores triggered alarm events
during the time period 1960–2006 (Fig. 4). The control
chart revealed that AVG and LISA methods triggered alarm
events at year two and persisted as an alarm signal for the
duration of the study period. An alarm signal was also trig-
gered using the MWA method, but at a later time than AVG
and LISA, at year four. The alarm signal in the MWA meth-
od did not persist for the length of the time period like that
of the AVG and LISA methods, instead it initiated at year
four and relented at year 15.



Fig. 3. Spatial distribution of alarm signal events in CUSUM (h = 7.9) shown in red, over a 47-year period using the three different methods for calculating z-
scores MWA, AVG, and LISA. Results show that LISA method for calculating z-scores had the highest number of rayons eliciting an alarm. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.).
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Temporal results from the CUSUM analysis using a crit-
ical threshold of h = 17.4 revealed that not all of the meth-
ods triggered alarm signals (Fig. 5). The control chart
shows that the LISA method and AVG method both initi-



Fig. 4. Max CUSUM of anthrax outbreaks during the time period 1960–2006 with an h = 7.9, portraying the control chart for the LISA, AVG, and MWA
methods. The three different methodologies each signal an alarm event represented by the crossing of the critical h threshold (red line). (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.).
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ated alarm signals at year two and persisted for the dura-
tion of the study period. The MWA method, however, failed
to elicit an alarm signal during the 47-year period.

The evaluation of multiple MWA time frames showed
differences in the ability to trigger an alarm signal based
on the size of the moving window (Fig. 6). The graph shows
that as the time range for each MWA increases so does the
max CUSUM value. Additionally, the graph indicates that
the max CUSUM values from the averages for years one
through four would not trigger an alarm signal during
the 47-year period using the chosen values of h = 7.9 or
17.4. There is a noticeable decrease in the inter-annual var-
iability of the larger moving windows, as the length of time
in the moving window increases the amount of variability
in the signal decreases. In the case of the 10 year window
Fig. 5. Max CUSUM of anthrax outbreaks in livestock during the time period 196
MWA methods. Alarm events are signaled for the LISA and AVG methods, represe
(For interpretation of the references to colour in this figure legend, the reader is
the initial max CUSUM is greater than the other window
time frames, but decreases at year thirty below the level
of the window time frames 1–5.

3.2. Z-score evaluation

The range of z-scores from each of the three methodol-
ogies is illustrated for all rayons for the year 1960 (Fig. 7).
The distribution of z-scores illustrates the differences be-
tween the magnitude and direction of z-scores for each
methodology used in the calculation of an expected dis-
ease rate. The range of z-scores when compared between
methodologies shows that within certain rayons there is
an inverse relationship among values. Rayons numbered
17–32 on the graph in Fig. 7 revealed that the LISA meth-
0–2006 with an h = 17.4, showing the control chart for the LISA, AVG, and
nted by the crossing of the critical h threshold (red line), but not the MWA.

referred to the web version of this article.).



Fig. 6. Control chart for anthrax outbreaks in Kazakhstan using varying expectations. Chart portrays signal levels derived from various z-score calculations
using expected values from a range of moving-window averages. Moving-window averages were calculated for the previous 1-, 2-, 3-, 4-, 5-, 6-, and 10-year
periods for a rayon.

Fig. 7. Distribution of z-scores from a single year (1960) across all 174 rayons in Kazakhstan using three different z-score calculation methods. The graph
shows differences in the z-scores for a given rayon using the MWA, AVG, and LISA methodology.

18 I. Kracalik et al. / Spatial and Spatio-temporal Epidemiology 2 (2011) 11–21
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odology has, at times, an inverse relationship compared to
the MWA and AVG methodologies. Although the inverse
relationship between the LISA method and the other two
methodologies does not hold true across all rayons, the
graph does depict a general inverse trend among z-scores.
4. Discussion

The methods set forth in this paper introduce tech-
niques for selecting a baseline rate of disease for use in a
prospective CUSUM. While prospective methodologies
have been widely used in the analysis of human disease
data, their application in veterinary health is far less exten-
sive (Kosmider et al. 2006). This is probably due to the dif-
ficulties encountered when attempting to analyse the
spatial and/or temporal patterns of livestock diseases
when population figures are not available, or when they
are provided at too coarse a resolution. A number of tech-
niques that have been proposed in the literature can be
used to aid in the analysis of outbreak data both retrospec-
tively and prospectively (Ord and Getis 1995; Ward and
Carpenter 2000; Carpenter 2001; Kulldorff et al. 2001;
Muscatello et al., 2005; Jefferson et al., 2008). However,
in statistical applications such as CUSUM there is often
uncertainty in deciding how to approximate a baseline rate
of disease. This issue is often further exacerbated by a lack
of guidance in the literature (Watkins et al., 2008).

It has been suggested that incorporating historical data
from epidemic, non-epidemic, or spatial associations be
used in order to construct a baseline rate of disease (Car-
penter, 2002; Hutwagner et al., 2005; Sonesson, 2007;
Watkins et al., 2008). In our prospective analyses of an-
thrax in livestock we applied three methodologies for cal-
culating baseline in a CUSUM approach including
incorporating a retrospective spatial statistic: LISA, AVG,
and MWA. While not unexpected, we found that the selec-
tion of a methodology to derive a disease baseline strongly
influences the identification of clusters in space and time.
Furthermore, the results in this study point to the impor-
tance of exploring data from multiple analytical perspec-
tives. This study shows that the CUSUM analysis elicited
additional cluster signals not found in the original applica-
tion of the Local Moran’s I statistic on anthrax outbreaks in
Kazakhstan from 1960 through 2006 performed in Kracalik
(2009). That is, the prospective methodology identified
emerging clusters not identified by a single retrospective
cluster analysis of the entire 47-year period. These findings
are similar to those presented by Rogerson (1997), for hu-
man cancer data, supporting that prospective methods can
potentially identify clusters undetected by retrospective
techniques.

Each of methodologies used incorporated a different
baseline calculation derived from a temporal component
(AVG), a spatial component (LISA), or a combination of
the two (MWA). Therefore, as expected each of the meth-
odologies produced differences in the spatial and/or tem-
poral distribution of clusters. While the total number of
spatial clusters differed between methodologies there
were some consistencies in the distribution of the clusters.
Emerging clusters were present in each of three methodol-
ogies in southern Kazakhstan around the city of Shymkent
(Fig. 3). Persistence of clusters in this area, despite a lack of
population data, suggest that future work should focus on
possible ecological conditions that might promote anthrax
persistence in this part of the country.

Spatial and/or temporal variations in the signaling of
emerging alarm events between methods may have been
a result of the differences in the magnitude and direction
of their z-scores (Fig. 7). However, it is interesting to note
in the control charts and the z-score distributions that de-
spite the fact that the MWA method and AVG method
share a similar max CUSUM chart their z-scores are a times
inversely related.

In CUSUM large deviations from baseline would result
in larger z-scores and a greater contribution to the max CU-
SUM, translating into fluctuations in the corresponding
control chart. The LISA and AVG methodology produced a
max CUSUM signal in the control chart that was higher
than the MWA. A persistently higher max CUSUM in this
case may have also resulted in a greater number of emerg-
ing spatial clusters. This was possibly due to the fact that
for the LISA and AVG methods the z-scores were derived
from a calculation based on the number of outbreaks in
surrounding rayons. The LISA methodology was based on
a Local Moran’s I calculation that compared the local spa-
tial clustering in a particular rayon to its contribution to
the global autocorrelation, whereas the AVG values were
obtained by comparing a single rayon to the outbreaks in
specific time period. On the other hand, the z-score calcu-
lation in the MWA method is only comparing outbreak
numbers in a rayon back to itself using a predefined mov-
ing-window average time frame.

The MWA method, however, is more prone to inter-an-
nual variation in the control chart signal depending on the
time frame average selected (Fig. 6). The CUSUM signal
from each moving window time frame apparently under-
goes a smoothing effect as the time frame of the moving
window increases from one year to ten years. There is a
noticeable decrease in the inter-annual variability when
the 10-year average is compared to the one-year average.
Shorter moving-window average time frames appear to
have a higher sensitivity to small changes in outbreak
numbers while a large moving average is less sensitive to
the number of outbreaks in single years. Essentially a lar-
ger moving-window average will not be as likely to trigger
a distinct alarm signal for a given year, but rather may have
an alarm signal present due to an artifact of high cases
from previous years. However, longer windows, such as a
10-year, show an elevated alarm signal initially and then
decreases at year forty-two below that of the other time
frames selected. Shorter moving window time frames
seem to elicit lower max CUSUM values requiring the need
for a smaller ARL. This leads us to the conclusion that there
is a trade-off in the amount of time selected in a moving-
window average; with signal sensitivity decreasing as the
moving average time frame increases and the ability to
trigger an alarm event increases.

The validity of the statistic is greatly dependent on
knowledge of the population at risk. Rogerson (2001) sug-
gests that long-term evaluations of disease status using a
CUSUM approach may be impacted by population move-
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ments. In this case there were no known estimates of pop-
ulation at a meaningful resolution to calculate prevalence
or incidence. This is a major caveat of the data and the
interpretation of the results must be looked at from an
exploratory perspective. However, for the purposes of this
study, the focus was on the comparison of methodologies
for calculating baseline rather than extracting information
on surveillance measures from exact cluster locations.

The methods introduced in this study only represent a
portion of the requirements for applying a CUSUM meth-
odology and additional parameters need to be taken into
consideration. Baseline in this study differs from the selec-
tion of a critical threshold of h used as an indicator for
emerging alarm signals or cluster events. Over long time
periods the selection of a single critical h may become
inappropriate for the data being analysed. In situations
such as this it may be necessary to reset the critical h to
a new more suitable threshold that takes into account
the level of sensitivity required between timeliness of the
statistic and the false alarm rate. Furthermore, the meth-
ods presented in this study represent only a few of the
many methods for calculating a baseline rate of disease.
When at all possible, estimates of the population should
be used to construct appropriate determinations of a dis-
ease status in order to gain a more appropriate representa-
tion of the disease status. Yet, in instances when there are
no data available on the population being studied one or
more of these methods presented here may provide an
exploratory tool for analysing the spatial and or temporal
distribution of health events. In this case consistent clus-
ters were detected in southern Kazakhstan from each of
the three methods for estimating baseline, suggesting fur-
ther efforts may be warranted for understanding the ecol-
ogy of the disease in this region. In the future more testing
needs to be done to look at the distribution of z-scores de-
rived from different baseline methodologies and to also
examine the data at a finer temporal resolution.
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