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Banana is an important crop in the Kagera region of Tanzania. Banana xanthomonas wilt (BXW) was first reported in

Kagera in 2006, and is now an important limiting factor in banana production, because all cultivars are susceptible

and infected plants can fail to produce fruit. BXW is caused by Xanthomonas campestris pv. musacearum (Xcm),

which is spread by farm tools, infected planting materials, and pollinating insects. Practices that address Xcm dissemi-

nation, such as mat removal, debudding and tool sterilization, have not prevented the spread of BXW in the region.

Disease surveys were conducted in Kagera from 2007 to 2011 to assess BXW presence, monitor its intensity and evalu-

ate its socioeconomic impacts. Spatiotemporal clusters of BXW were analysed with ARCGIS and SAS. The relationship

between BXW clusters and environmental variables was examined using bivariate correlations in SPSS; two modelling

approaches, MaxEnt (maximum entropy) and logistic regression, were used to predict the potential distribution of

BXW in Tanzania. Disease progress over time was best described with the Gompertz model. Significant clustering of

BXW was observed in all years and hotspots were located in the Muleba, Karagwe, Misenyi and Bukoba rural districts.

These findings suggest that BXW spreads rapidly over short distances. BXW clusters were positively correlated with

rainfall and negatively with temperature and altitude. According to MaxEnt, precipitation was the main factor associ-

ated with BXW development. MaxEnt and logistic regression predicted a wide potential distribution of BXW in Tanza-

nia because the climate in all banana-growing regions is conducive for its establishment.
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Introduction

Banana xanthomonas wilt (BXW) is a serious emerging
disease that affects all banana and plantain cultivars
(Musa acuminata and hybrids of M. acuminata and M.
balbisiana) that have been tested (Tripathi et al., 2009).
BXW was probably first described by Castellani (1939)
on enset (Ensete ventricosum), a close relative of banana,
in Ethiopia. Subsequently, Yirgou & Bradbury (1968)
described the causal agent as a species of Xanthomonas
(now known as Xanthomonas campestris pv. musa-
cearum (Xcm)), and reported that banana was also sus-
ceptible (Yirgou & Bradbury, 1974). Although Yirgou &
Bradbury (1974) recognized that BXW posed a threat to
banana cultivation outside Ethiopia, the disease was lim-
ited to Ethiopia until it was reported in the Mukono dis-
trict of Uganda in 2001 (Tushemereirwe et al., 2004).

However, once BXW established in Uganda, it spread
quickly and within 5 years the disease had spread to
neighbouring countries, including Tanzania, Kenya,
Rwanda, Burundi and the Democratic Republic of
Congo (Carter et al., 2010).
In Tanzania, BXW was identified for the first time in

January 2006 in Kabare village in the Muleba district of
the Kagera region of northwest Tanzania (Carter et al.,
2010; Fig. 1). Thereafter, the disease spread to all seven
districts in Kagera and to the neighbouring regions of
Mara and Kigoma. This raised concerns that BXW
would spread further east to Kilimanjaro and Mbeya,
which are major banana-producing regions in Tanzania.
The BXW pathogen is a Gram-negative, rod-shaped

bacterium with a single polar flagellum (Yirgou & Brad-
bury, 1974). It invades the vascular system of banana,
causing wilt and death of the plant. Its primary mode of
natural transmission is by insect vectors, particularly
stingless bees, which feed on ooze from fresh bract scars
in male buds, especially those of cultivars with an ABB
genome (cultivars that have one set of chromosomes
donated by M. acuminata and two by M. balbisiana;
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Tripathi et al., 2009). The pathogen is also disseminated
by movement of infected planting material and via con-
taminated garden tools (Tripathi et al., 2009). Nectar-
collecting and fruit-eating birds and bats are also sus-
pected of transmitting the bacterium. Symptomless
banana bunches and leaves used to wrap bunches for
transport to markets are another important source of
Xcm inoculum that may be responsible for its long-
distance spread (Nakato et al., 2013).
The main symptoms of BXW are wilting and necrosis

of leaves, wilting of the male flower, vascular discoloura-
tion, and premature and uneven ripening of fruits. Yel-
low ooze is excreted from cuts on any part of an
infected plant. Initial symptoms on affected plants vary
depending on the mode of infection. When Xcm trans-
mission occurs via pollinating insects, male buds wilt
and wither, whereas plants infected before flowering, via
contaminated garden tools, display a progressive yellow-
ing of leaves from the leaf tip toward the petioles. Most
infected suckers die prematurely (Tripathi et al., 2009).
Most BXW management practices were developed for

moko disease, a bacterial wilt of banana caused by Ral-
stonia solanacearum phylotype II (Cellier et al., 2012).
Moko disease resembles BXW with respect to its epi-
demiology and the damage it causes (Thwaites et al.,
2000). Management practices recommended for BXW

include roguing of affected mats (whole mat removal),
burying or burning of infected materials, removal of sin-
gle stems from affected plants, disinfecting farm tools
after every use, and male bud removal soon after the last
hand of fruit is formed (Blomme et al., 2014). Similar to
moko disease, control of BXW is very challenging due to
the absence of effective bactericides and acceptable resis-
tant cultivars (i.e. those without male buds or persistent
bracts, which are not infested by insect vectors). Even if
effective bactericides were available, they would proba-
bly not be used in small-scale diversified banana fields
that predominate in Eastern Africa.
Since BXW spread to Kagera, it has caused severe

losses and affected the livelihoods of people who rely on
banana as a staple crop. The numbers of poor house-
holds, vulnerable to food insecurity, have increased each
year. By 2011, the combined loss of banana production
and cost of buying alternative food crops was an esti-
mated US$10 million (Nkuba et al., 2015).
Knowledge of where and when a disease occurs is cru-

cial for identifying disease risk factors, improving the
efficiency of surveillance methods and identifying control
strategies (Madden et al., 2007). A better understanding
of the factors that are associated with BXW risk is
needed in order to devise effective control and eradica-
tion strategies. Although epidemiological studies on

Figure 1 Locations of villages that had one

or more fields affected with banana

xanthomonas wilt during five surveys (2007–

11) in Kagera region, Tanzania. [Colour

figure can be viewed at

wileyonlinelibrary.com].
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BXW have been conducted (Shimelash et al., 2008; Adi-
kini et al., 2013; Nakato et al., 2013), little is known
about the distribution of BXW in space and time in rela-
tion to environmental factors (Bouwmeester et al., 2010;
Shimwela et al., 2016).
Banana is a perennial crop that requires continuous

management throughout the year. Altitude and weather
conditions, particularly temperature and rainfall, influ-
ence growth of the crop as well as the spread of BXW
(Shimelash et al., 2008; Tripathi et al., 2009). Transmis-
sion of Xcm occurs throughout the year, but varies
according to altitude and season. For example, male bud
infection that is mediated by insect vectors has not been
observed at high altitudes in Ethiopia (Shimelash et al.,
2008), but is common at mid and low altitudes around
Lake Victoria (Tripathi et al., 2009). However, quantita-
tive relationships between altitude, climatic factors and
BXW incidence are not known, and the risk for its
spread to other banana-growing regions in Tanzania has
not been estimated.
Modelling and geographical information systems (GIS)

allow spatiotemporal patterns of disease occurrence and
risk levels to be computed over wide areas with limited
data. Geospatial analytical techniques, including spatial
autocorrelation, hotspot analysis, cluster analysis and
temporal spatial analysis, are commonly used to deter-
mine patterns of disease spread, areas with high disease
incidence, and the extent to which a disease could spread
(Pfeiffer et al., 2008).
One of the ways to assess the risk of spread is to eval-

uate climatic requirements for disease establishment
(Shaw & Osborne, 2011; Yuen & Mila, 2015). How
environmental variables relate to the spatial occurrence
of a disease can be estimated with different modelling
techniques and algorithms. Maximum entropy (MaxEnt)
modelling and logistic regression have been employed
widely to determine the potential areas with high risk of
pathogen establishment (Narouei-Khandan et al., 2016).
MaxEnt is a presence-only ecological niche modelling
technique that enables the efficient use of small sample
sizes, and the use of both continuous and categorical
variables (Phillips et al., 2006). Logistic regression is fre-
quently used to model plant disease distribution and risk
(Shaw & Osborne, 2011), and can be implemented in a
generalized linear model (GLM) framework for data
with a binary distribution, such as species presence or
absence (Hosmer & Lemeshow, 2000). The output from
a logistic regression model can be used in GIS to map
the predicted geographic distribution of areas most likely
to sustain the species of interest.
The overall aim of this study was to describe the cur-

rent spatial and spatiotemporal patterns of BXW spread,
and relate current disease distribution to geophysical and
climatological factors. To this end, modelling techniques
and spatial and geostatistical analyses were used to study
BXW and co-occurring environmental factors in the
Kagera region of Tanzania. Five spatial datasets collected
between 2007 and 2011 were used to: (i) investigate the
local and regional distribution of BXW in Kagera in

space and time, (ii) examine relationships between BXW
hotspots in Kagera and environmental variables, and (iii)
develop a risk map for BXW development in Tanzania
based on significant climatological and geophysical data.

Materials and methods

BXW data acquisition

Surveys were conducted between 2007 and 2011 to assess the
presence of BXW disease, monitor its intensity, and to evaluate its

socioeconomic impacts in Kagera (Fig. 1). The surveys were

conducted by experienced ARI-Maruku research teams and

well-trained agricultural extension officers from district-level agri-
culture and livestock development offices (DALDO), in collabora-

tion with international institutes such as the International

Institute of Tropical Agriculture (IITA), the USAID-funded regio-

nal C3P project, Bioversity International, and the Food and Agri-
culture Organization (FAO) of the United Nations. Datasets of

BXW used in this study were obtained from scientists and exten-

sion officers who participated in surveys, and from published

reports (Table S1). The BXW surveys used the same approaches
to ensure comparable results and proposed actions (Blomme

et al., 2014). Detailed sampling methodologies and preliminary

data analyses can be found elsewhere (Abele et al., 2007; Ruga-
lema & Mathieson, 2009; Nkuba et al., 2015). All surveys

employed a common structured household questionnaire through

face-to-face interviews and BXW field inspections by research and

extension personnel. The sample sizes (number of farms surveyed)
were 204, 269, 261, 120 and 120 in 2007, 2008, 2009, 2010 and

2011, respectively. In all surveys, the locations were georefer-

enced and BXW was identified by the researchers and extension

officers, based on diagnostic symptoms of the disease, including
wilting of leaves, wilting of the male flower, premature and

uneven ripening of fruits and excretion of yellow ooze from cut

surfaces of affected plants. A follow-up survey was conducted in
2014 to acquire GPS coordinates for BXW-positive farms that

had not been georeferenced in previous surveys. For geostatistical

analysis, locations where the disease was observed were consid-

ered presence points and locations where BXW was not observed
were considered absence points.

To assess the progress of BXW between 2006 and 2011, data

were also obtained by DALDO officers during routine monitor-

ing in 703 villages. In each village, 5–18 farms were visited,
depending on the size of the village. The data obtained from

these villages consisted of positive cases only, i.e. villages where

BXW was observed, as confirmed by ward (administrative level

4, containing several villages) agricultural extension officers.

Geoprocessing of BXW data

Because datasets on the occurrence of BXW were acquired from

different sources, in various formats and depths, geoprocessing

of the data was necessary prior to further analysis; geoprocess-
ing included projection and coordinate transformation, clipping,

masking, feature selection, buffering, grid resampling and reclas-

sification (Ormsby et al., 2010). The datasets were processed

within ARCGIS v. 10.2.1 using the SPATIAL ANALYST extension.

Temporal development of BXW

Disease incidence (y), measured as the proportion of 703 villages

in Kagera with at least one BXW case throughout the year, was
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used to generate disease progress curves as a function of time

(x). The number of villages affected by BXW in each year was
obtained from DALDO offices, based on the monthly reports of

ward agricultural extension officers. Temporal development of

cumulative BXW incidences were analysed by fitting

monomolecular, logistic and Gompertz models to the observed
data using PROC NLIN in SAS v. 9.3 (SAS Institute Inc.). The good-

ness of fit of the models was evaluated based on the regression

of predicted versus observed values and visual inspection of
residual plots (Madden et al., 2007).

Spatial analysis of BXW cases in Kagera region

Various spatial analysis techniques, such as kernel density esti-

mation, average nearest neighbours index (ANNI), spatial auto-

correlation analysis, Getis and Ord statistics G�
i ðdÞ, and Ripley’s

K function are commonly used to detect spatial patterns of a

disease in a given area (Pfeiffer et al., 2008). In this study, two

spatial analysis techniques, Ripley’s K function and G�
i ðdÞ were

used to determine clustering of BXW cases in Kagera. Ripley’s

K function was used to estimate the size of the spatial scale of

clustering of BXW cases in each year from 2007 to 2011. Fur-

ther analysis with G�
i ðdÞ was undertaken to determine where

significant spatial clustering of BXW occurred in Kagera in each

year.

Ripley’s K function analysis

The second-order spatial point-pattern analysis technique was

used to determine the distance (d) at which clustering of the dis-
ease occurred in the Kagera landscape. Ripley’s K function

allows for testing of complete spatial randomness and is defined

as the expected number of individuals within a distance (d) of
randomly chosen individuals in a population (Gatrell et al.,
1996). Mathematically, the K function is defined as:

KðdÞ ¼ k�1E (1)

where k is the intensity of the spatial process (in this study,

the mean number of BXW cases reported per unit area) per
year, and E refers to the edge-corrected expected value. The

intensity, k, is given by N⁄A where N is the number of BXW

cases in the study area A. If the cases of BXW per year are

randomly (Poisson) distributed, the expected value of K(d) is
pd2. K(d) is linearized as L(d) (Gatrell et al., 1996):

LðdÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðKðdÞ=pÞ

q
(2)

where L(d) is a linear expression of the expected number of cases

occurring within distance d in metres (m) of all cases. Output of

the K function is represented graphically as plots of L(d) versus
distance d, which represents the expected cluster radius. More

detailed information on the Ripley’s K function method is pro-

vided in the supplementary text S1. The analyses of the K function

were performed with the SPATIAL ANALYST extension in ARCGIS v.
10.2.1 and search distances of 1000 m with 20 steps (0–100) and
99 permutations, for a P < 0.01 confidence interval.

Getis and Ord statistic G�
i ðdÞ

The G�
i ðdÞ statistic was used to determine the spatial clustering

of events (i.e. disease cases) with respect to each other within a

predefined distance threshold (Getis et al., 2003). This is a

group-level statistic requiring data to be grouped. The grouping

can be done within village or district boundaries (rayons) or by
creating hexagons on the landscape. Therefore, a 2 km hexago-

nal grid surface (measured from the centre to a peripheral cor-

ner) was generated for the entire Kagera region using the

GENPOINTINPOLY tool in geospatial modelling environment (GME)
(Beyer, 2012). The 2 km grid was chosen to minimize ecological

fallacy. This resulted in 1901 hexagons for the entire Kagera

region. BXW cases per year were then spatially grouped onto
the grid surface using ARCGIS v. 10.2.1. The G�

i ðdÞ statistic was

defined by Getis & Ord (1992) as:

G�
i ðdÞ ¼

P
j wijðdÞxj �W�

i x�

sf½ðnS�1iÞ �W�2
i �=ðn� 1Þg1=2

(3)

where W and w represent a weights matrix used to determine
spatial structure and association among locations in a dataset, i
is the cell of analysis in which all other cells (j) must fall within

a distance (d) to be included, x is number of BXW cases, n is
the total number of locations, S and s are the standard

deviations, and x̄ is the mean of all BXW cases located within

2 km-hexagonal grid cells. The G�
i ðdÞ statistics analysis was

performed within ARCGIS v. 10.2.1 with fixed distance bands of
1, 5 and 10 km to examine the critical distances at which BXW

cases were clustered. These distances were then mapped together

as a 4-class choropleth map, with classes representing no

significance (NS), 1, 5 and 10 km critical distances. Detailed
information on the G�

i ðdÞ statistics method is provided in

supplementary text S1.

Environmental effects

The relationship between BXW clusters (hot spots identified by
G�

i ðdÞ statistics; Getis et al., 2003) and environmental variables

was examined using bivariate correlations. Environmental vari-

ables (Table S2) for Kagera, consisting of 19 bioclimatic vari-

ables (quarterly and annual temperatures and precipitation) and
average altitude, were downloaded from the WorldClim-Global

climate data website (www.worldclim.org; Hijmans et al.,
2005). Spatial resolution for all environmental rasters were

approximately 1 9 1 km (30 arc-s). The corresponding raster
values were extracted to points using the SPATIAL ANALYST tool in

ARCMAP v. 10.2.1. The relationship between BXW clusters and

environmental variables was examined using Pearson’s correla-
tion coefficient (2-tailed P value ≤0.05 significance) using SPSS v.

16.0 (SPSS Inc.).

Ecological niche modelling

MaxEnt
The MAXENT program v. 3.3.3 was used to predict the potential

geographic distribution of BXW in Tanzania. The MaxEnt

model requires point locations where species are known to
occur (presence-only data) and environmental covariates (e.g.

precipitation and temperature). MaxEnt randomly selects

pseudo-absence values from a user-defined extent of the study

background (those pixels in the study area without presence
points). Briefly, MaxEnt uses the principle of maximum entropy

to make predictions from incomplete information. MaxEnt esti-

mates the unknown probability distribution by finding the most
uniform distribution (maximum entropy) across the study area.

Phillips et al. (2006) and Elith et al. (2011) provide detailed

mathematical descriptions of MaxEnt.
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To avoid model overfitting of spatially clustered presence

points, and the inability to predict spatially independent data,
the presence data were spatially rarified using the SDMTOOLBOX

(Brown, 2014; Narouei-Khandan et al., 2016) at a spatial reso-

lution of 2 km (African Equidistant conic projection), which

reduced the BXW presence points from 640 to 225. In MaxEnt,
presence points are compared with background points, where

the probability of species presence is unknown. Because the

background extent can affect model predictions (Senay et al.,
2013), an exploratory approach was used to define the proper

background extent. A 50-km buffer was defined as the

appropriate distance at which the area under the receiver operat-

ing characteristic curve (AUROC) value was maximized
(Narouei-Khandan et al., 2016).

Highly correlated variables were determined and removed by

performing pairwise Pearson’s correlation tests in SDMTOOLBOX

to avoid multicolinearity. Variables with a correlation >0.85
were removed, resulting in the selection of 10 bioclimatic vari-

ables (Table S2). To train the model, 75% of the presence data

was used and 25% was used for model validation. The model

was set to run with 5000 iterations and more than 10 000 back-
ground points with 15 replications. The model was also set to

run the jackknife test, which evaluates variable importance, and

to produce response curves showing the relationship between
each environmental variable and the probability of disease

occurrence (Phillips, 2006). The MaxEnt prediction performance

was evaluated by area under the curve or AUROC (Phillips

et al., 2006). The AUROC plots true positive predictions (pres-
ence locations with correct predictions) versus false positive pre-

dictions (the absence locations that were incorrectly predicted as

presence).

Regression modelling
Logistic regression and GIS have been widely used to predict

geographic distribution of plant diseases (Shaw & Osborne,

2011; Yuen & Mila, 2015). ARCGIS is helpful in extracting the
variables to run logistic regression and building maps based on

the results from regression analysis. Logistic regression is a mod-

elling technique that can be used to predict the probability of

occurrence of an event as a function of the independent vari-
ables (Hosmer & Lemeshow, 2000). Logistic regression gener-

ates the model statistics and coefficients that predict a logit

transformation of the probability that the dependent variable is
1 (probability of occurrence of a BXW event). Logistic regres-

sion involves fitting a dependent variable using the following

equations:

Y ¼ logitðpÞ ¼ ln½p=ð1� pÞ� ¼ b0 þ b1X1 þ b2X2. . .þ bnXn

(4)

p ¼ ey=ð1þ eyÞ (5)

p ¼ expðb0 þ b1X1 þ b2X2. . .þ bnXnÞ=
ð1þ ½expðb0 þ b1X1 þ b2X2. . .þ bnXnÞ�Þ

(6)

where p is the probability that the dependent variable (Y) is 1,

b0 = intercept, b1 = coefficient, and X = predictors (environmen-

tal variables). The model was generated using a GLM logistic
model through the RATTLE package in R (Williams, 2009). Pre-

dicted probabilities from the logistic regression were mapped

using the raster calculator in SPATIAL ANALYST extension in ARC-

GIS v. 10.2.1.
The 225 spatially rarified BXW presence points were used

and coded as 1. The absence points were selected randomly

across the entire landscape of Tanzania, including Kagera. The

areas around presence points were removed prior to random
selection of absence points, by drawing minimum convex poly-

gons using the GENMCP tool in geospatial modelling environment

(GME) resulting in five separate polygons. By using the GENRAN-

DOMPNTS tool in GME, 450 (1:2) absence points were randomly
generated for the entire landscape of Tanzania, and coded those

as 0. The results were the same when more absence points were

used (data not shown). The presence (1) and absence (0) points
of BXW were then combined using the ‘append’ function in the

DATA MANAGEMENT tool (ARCMAP v. 10.2.1). Finally, the corre-

sponding rasters of 10 selected environmental variables

(Table S2) were extracted to points using EXTRACT MULTI-VALUES
TO POINTS tool in SPATIAL ANALYST tools in ARCMAP v. 10.2.1.

The same 10 variables used in MaxEnt were selected and used

in the regression analysis. For each model run, a random 75%

of the data was used for training and 25% for validation. For
final model selection, predictors with the largest P values were

removed in a stepwise fashion. AUROC was used to evaluate

the predictive performance of the model using measures of speci-

ficity (absence of commission error) and sensitivity (absence of
omission error). The overall error (based on a confusion matrix

of actual versus predicted values) and Akaike information crite-

rion (AIC) for all the test models were also compared. The
model with lower AIC and overall error and higher AUROC

was considered the best model.

Results

Temporal progress of BXW

In January 2006, the first cases of BXW were reported
from Kabale village in the Muleba district of Kagera,
and during that year the disease was also observed in

Figure 2 Disease progress curve for the proportion of surveyed

villages with banana xanthomonas wilt (BXW) over the period 2005–11,

in Kagera region, Tanzania. Squares and the continuous line indicate

observed and estimated disease incidence, respectively, using the

Gompertz model. BXW was first found in one field in one village in

2006.
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Kabale B sub-village, and Bumilo and Magata villages.
The Gompertz temporal model best described disease
progress over time and had the highest R2 (0.977), resid-
ual distribution close to normal and low MSE (0.0046).
The Pearson correlation between the observed and pre-
dicted values based on the Gompertz model was 0.996.
BXW spread rapidly from 2007 and, by 2011, disease
incidence (positive villages out of all villages surveyed)
approached 1 (Fig. 2).

BXW cluster analysis in Kagera region

The results of Ripley’s K function analyses revealed that
observed numbers of BXW cases were significantly clus-
tered in Kagera in each year (L(d) > d; Fig. 3). Signifi-
cant clustering of BXW cases in 2007 started at 4 km
and increased with increasing distance, while in all other
years clustering started below 2 km. Very strong cluster-
ing occurred between 5 and 10 km throughout the study
period (Fig. 3). In 2008 and 2009, the significance of
clustering dissipated at 25 km, while in 2007 and 2011
it continued to more than 30 km (Fig. 3).
Local clustering of BXW was recorded at critical dis-

tances (dc) of 1, 5 and 10 km (z ≥ 1.96 at a = 0.05;
Fig. 4). The total number of statistically significant clus-
ters differed per year and per critical distance, with large
numbers of clusters being recorded at 10 km and few at

1 km (Table 1; Figs S1 & S2). Localized clusters were
denoted by small critical distances whereas dispersed
clusters were indicated by large distances. Consistent
clustering of BXW was recorded in 2008, 2009 and
2010, but by 2011, disease clusters were more spread
out across the landscape, with an increased number at a
smaller critical distance of 1 km compared to other years
(Figs S3 & S4).

Environmental effects

Pearson’s correlation analyses revealed significant rela-
tionships between environmental variables and BXW
clusters (Table 2). The relationship between precipitation
and BXW cluster occurrence was positive and highly
significant (P < 0.01). Significant (P = 0.05) but weak
negative correlations were obtained between tempera-
ture, precipitation seasonality, average altitude and BXW
clusters.

Modelling potential geographic distribution of BXW in
Tanzania

The training data of BXW was described well by the Max-
Ent model. The AUROC value was 0.93, indicating that
the model performed with high accuracy, and that the
selected environmental variables explained the potential

Figure 3 Ripley’s K function analysis used to

calculate the clustering of banana

xanthomonas wilt (BXW) cases in Kagera

region, Tanzania, from 2007 to 2011. The

graph for 2010 (not shown) was very similar

to that of 2009. The observed value of the

test statistic L(d) (linear expression of the

expected number of cases occurring within

distance d) at a given distance is marked by

dash-dot lines, while expected distance is

presented with a solid line. Observed L(d)

greater than expected (L(d) > d) indicates

clustering. The boundaries of the 99%

confidence interval on the null hypothesis of

complete spatial randomness are denoted

by plain dashed lines.
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BXW distribution in Tanzania. The MaxEnt model pre-
dicted that all high and medium altitude banana produc-
tion regions of Tanzania would be highly suitable for the
establishment of BXW (Fig. 5). Logistic regression also
resulted in high prediction accuracy (AUROC = 0.99),
low AIC (123.5), high pseudo R2 (0.93), and low overall
error rate (0.0298), indicating good predictive perfor-
mance as well as good discrimination between presence
and absence points. The logistic regression model resulted
in predictions very similar to those of the MaxEnt model
(Fig. 6), except that the areas that would be suitable for
BXW establishment were more extensive.
Five environmental variables (mean temperature of

warmest quarter (bio10), precipitation of the warmest
quarter (bio18), annual precipitation (bio12), annual
temperature range (bio7), and precipitation in the coldest
quarter (bio19)) contributed significantly to prediction by
the MaxEnt model, with contributions ranging from 7%
to 36% (Table 3). Variable bio10 contributed most, fol-
lowed by bio 18 and bio12. According to the jackknife

test, the variable that had the highest training gain when
used alone was bio18 (Fig. S5). Model gain decreased
most when bio19 was omitted, implying that bio19 had
the greatest impact on model performance compared to
other variables (Fig S5). MaxEnt identified distinct rela-
tionships between the probability of BXW occurrence
and the top three variables that contributed most to dis-
ease prediction (Fig. 7). The probability of BXW pres-
ence decreased as bio10 increased, with the highest
probability predicted at temperatures between 17 and
22 °C in the warmest quarter (Fig. 7a). The probability
of BXW occurrence increased with increasing precipita-
tion in the warmest quarter up to 700 mm, but declined
with higher rainfall (Fig. 7b). This probability also
increased with total annual rainfall up to 1400 mm and
remained unchanged with a further increase in rainfall
(Fig. 7c). As with MaxEnt, logistic regression indicated
that bio18, bio19, bio7 and bio2 influenced BXW occur-
rence (Tables 3 & 4). Altitude and bio15 had very mini-
mal contribution to the performance of both models.

Figure 4 Spatial clusters of banana

xanthomonas wilt in Kagera region using the

local statistic G�
i ðdÞ with three different

threshold distances, in 2007–10. Significant

clusters at distances of 1, 5 and 10 km are

presented in red, gold and yellow. The G�
i ðdÞ

values that did not increase with these

distances were designated as not significant.

The cluster distribution in 2011 was not

comparable to those in 2007–10 because the

sample size was small and concentrated in

only a few wards. [Colour figure can be

viewed at wileyonlinelibrary.com].
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Discussion

Banana xanthomonas wilt spread rapidly in Kagera after it
was first reported in 2006, and within 5 years its incidence
approached 100%. Banana plants affected by BXW die
and thus, the disease rapidly reduces yields and the area
planted to the crop (Nkuba et al., 2015). In an attempt to
reduce the spread of BXW, the local government in Kagera

initiated an intervention programme in 2013 that forced
removal of affected plants (Shimwela et al., 2016). Similar
intervention measures were implemented in Uganda in
2005 (Tushemereirwe et al., 2006), but the disease contin-
ued to spread due to a variety of factors (Shimwela et al.,
2016); nonetheless, epidemic development eventually slo-
wed in some areas in Uganda (Tushemereirwe et al., 2006;
Kubiriba et al., 2012).
The Ripley’s K plots indicated that BXW was spatially

clustered in Kagera from 2007 to 2011. The G�
i ðdÞ statis-

tic identified localized clusters in the survey data, indicat-
ing that there was both local spread, possibly by insects,
rain splash or contaminated planting materials and tools,
and regional spread, possibly by further distribution of
contaminated planting materials and banana bunches
(Nakato et al., 2013; Shimwela et al., 2016). The clus-
ters, also called hotspots, were concentrated in Muleba,
Karagwe, Misenyi and Bukoba rural districts across all
years, and seemed to disappear in some years and reap-
pear in others. This could be due to successful removal
of infected plants in some villages followed by a resur-
gence of the disease after a few months. Kubiriba et al.
(2012) also reported a resurgence of BXW in Uganda,
probably due to reintroduction of infected planting mate-
rials and the long incubation period up to 36 months
(Ocimati et al., 2013).

Table 1 Values of critical distance (dc) used in Getis and Ord G�
i ðdÞ

statistics, and number of significant local clusters of banana

xanthomonas wilt detected for each distance over a period of 5 years

Year

Critical distance

(dc) (km)

No. of significant

clustersa

2007 1 12

5 52

10 32

2008 1 20

5 44

10 100

2009 1 19

5 42

10 107

2010 1 20

5 47

10 110

2011 1 27

5 53

10 68

az ≥ 1.96 at a = 0.05.

Table 2 Bivariate correlations between banana xanthomonas wilt

clusters and environmental variables in Kagera region, Tanzania

Code Variable

Pearson

correlation (r)

Bio18 Precipitation of warmest quarter 0.344**

Bio13 Precipitation of wettest month 0.327**

Bio12 Annual precipitation 0.325**

Bio16 Precipitation of wettest quarter 0.309**

Bio14 Precipitation of driest month 0.306**

Bio17 Precipitation of driest quarter 0.301**

Bio19 Precipitation of coldest quarter 0.045*

Bio15 Precipitation seasonality

(coefficient of variation)

�0.119**

Bio4 Temperature seasonality

(standard deviation 9 100)

�0.175**

Bio5 Maximum temperature of warmest month �0.117**

Bio7 Temperature annual range �0.116**

Bio3 Isothermality (bio2⁄bio7) (9100) �0.076**

Bio6 Minimum temperature of coldest month �0.072**

— Average altitude �0.064**

Bio9 Mean temperature of driest quarter �0.043**

Bio10 Mean temperature of warmest quarter �0.042**

Bio11 Mean temperature of coldest quarter �0.036**

Bio1 Annual mean temperature �0.025*

**Correlation significant at a = 0.01 (2-tailed); *correlation significant at

a = 0.05 (2-tailed).

Figure 5 The potential distribution of banana xanthomonas wilt in

Tanzania as predicted by the MaxEnt model (warmer colour indicates

higher suitability). Bold dashed circles are major banana producing

regions (Kagera in the northwest, Kilimanjaro in the northeast, and

Mbeya in the southern highland of Tanzania); dotted circles are the

areas with medium banana production.
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Another important finding of this study was the strong
positive association of BXW occurrence with rainfall,
especially in the warmest quarter (MaxEnt and logistic
regression), but also in the coldest quarter (logistic
regression). A positive correlation between BXW and
rainfall had been reported earlier (Bouwmeester et al.,
2010; Tripathi et al., 2009). Rain splash and wind-dri-
ven rain play an important role in the short- and long-
distance dispersal of many plant-pathogenic bacteria
such as Xanthomonas axonopodis pv. citri, the causal
agent of citrus canker (Gottwald et al., 2002). Thus,
rainfall might also be responsible for the primary short-
distance spread of BXW in Kagera, which would be con-
sistent with the concentrated BXW clusters that were
observed in this region.
In Kagera, BXW local spatial clusters were negatively

correlated with temperature and average altitude of the
BXW clusters. The negative correlation between temper-
ature and BXW was confirmed in MaxEnt for the warm-
est quarter. Altitude was not selected as a contributing
factor in MaxEnt although it was an important factor in
logistic regression. Negative correlations between temper-
ature and altitude and BXW were also found by Shime-
lash et al. (2008) and Bouwmeester et al. (2010). The
negative relationship between BXW and altitude was
attributed to the reduced activity of insect vectors at
higher altitudes (Shimelash et al., 2008; Tripathi et al.,
2009). In Kagera, the negative correlation between

altitude and BXW incidence may be attributed to the
higher rainfall at lower altitudes close to the shore of
Lake Victoria. This explains the seemingly contradictory
result that both temperature and altitude were negatively
correlated with BXW occurrence, even though tempera-
tures commonly decline with altitude. This may indicate
that rainfall contributes more to the spread of BXW than
insect vectors.
Banana xanthomonas wilt occurs throughout Kagera,

and, according to recent informal reports, is also present
in Kigoma and Mara. These locations were not included
among the presence points, but were predicted to be
areas conducive for BXW, and, thus, could be considered
positive validation points. However, as far as the authors
are aware, BXW is not present in other areas of Tanza-
nia and this is the first study to predict the potential
development of this disease elsewhere in Tanzania.
According to MaxEnt and logistic regression, all areas
with high and medium banana production (including
Kagera, Kilimanjaro, Mbeya, Tanga, Kigoma, Mara,
Morogoro and Arusha) are predicted to be highly suit-
able for BXW establishment, although one needs to real-
ize that this prediction is based on extrapolation, a
limitation of all correlative species distribution models.
The probability of BXW establishment in the central part
of Tanzania is predicted to be lower than that in the
other areas of the country due to the dry climate in that
area and the less extensive banana production than in
other parts of Tanzania.
V�aclav�ık & Meentemeyer (2009) recommended using

more than one modelling approach when predicting the
spread of a species in a particular area because different
models might predict different outcomes. For example,
the BXW-conducive areas that were predicted in the pre-
sent study by logistic regression were more extensive
than those predicted by MaxEnt. MaxEnt is known to
produce more conservative predictions than other niche
models (Narouei-Khandan et al., 2016).

Figure 6 The potential distribution of banana xanthomonas wilt in

Tanzania as predicted by the logistic model (warmer colour indicates

higher suitability). Bold dashed circles are major banana producing

regions (Kagera in the northwest, Kilimanjaro in the northeast, and

Mbeya in the southern highland of Tanzania); dotted circles are the

areas with medium banana production.

Table 3 Percentage contribution (out of 5000 iterations) of selected

independent environmental variables used in MaxEnt to model banana

xanthomonas wilt distribution in Tanzania

Code Variable Unit

Contribution

(%)

Bio10 Mean temperature

of warmest quarter

°C 36.1

Bio18 Precipitation of

warmest quarter

mm per 3 months 23.3

Bio12 Annual precipitation mm per year 19.1

Bio7 Temperature

annual range

°C 7.1

Bio19 Precipitation of

coldest quarter

mm per 3 months 7.0

Bio4 Temperature seasonality % 4.4

Bio2 Mean diurnal range °C 1.9

Bio15 Precipitation seasonality — 0.6

— Average altitude m 0.4

Bio14 Precipitation

of driest month

mm per month 0.0
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The current absence of BXW in disease-conducive
areas like Kilimanjaro, Mbeya, Tanga, Morogoro and
Arusha is probably due to the dry climate and the long
distance (approximately 1000 km) between these areas
and the Kagera, Kigoma and Mara regions. Dispersal of
Xcm by natural means (rain, wind and vectors) is limited
to relatively short distances. However, long-distance
spread is possible via the movement of infected planting
materials, banana bunches, and possibly leaves used as
packing material (Nakato et al., 2013). As the climatic
conditions are favourable for BXW establishment in the
unaffected areas in Tanzania, it is very important to con-
trol the movement of banana materials into these areas.
Recent improvements of the roads that connect Kagera
with the rest of the country may increase the likelihood
of spread of BXW from Kagera to other areas in Tanza-
nia with suitable conditions for disease establishment.

Figure 7 Response curves of three variables, (a) mean temperature in the warmest quarter (°C), (b) precipitation in the warmest quarter (mm), and

(c) annual precipitation (mm), contributing most to the predictions of the occurrence of banana xanthomonas wilt (BXW) in Tanzania by the MaxEnt

model.

Table 4 Model summary from stepwise logistic regression used to

predict the presence/absence of banana xanthomonas wilt in Tanzania

Code Variable

Parameter estimate

b-coefficient

Standard

error P

Bio18 Precipitation in

warmest quarter

0.0151 0.003 <0.0001

Bio4 Temperature seasonality �2.4957 0.583 <0.0001

— Average altitude 0.0062 0.002 0.0004

Bio7 Temperature

annual range

3.9678 1.206 0.0010

Bio2 Mean diurnal range �4.3442 1.486 0.0034

Bio15 Precipitation seasonality �0.1501 0.064 0.0188

Bio19 Precipitation in

coldest quarter

0.0082 0.004 0.0218

Constant 1.2745 6.155 0.8359
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Disease maps that delineated the potential distribu-
tion of BXW in Tanzania in the present study were
generated partially by extrapolation (by considering
areas outside of Kagera) and thus, these maps may need
to be viewed with some caution. Nevertheless, the maps
could be used to develop better-directed surveillance
systems for the disease in Tanzania. Furthermore, these
maps could help policymakers establish regulatory and
eradication policies for BXW in Tanzania, and assist
the extension officers and national crop protection
departments to decide where to enact control strategies.
Based on extensive BXW surveys, Uganda was divided
into three epidemic zones with different disease intensi-
ties (Tushemereirwe et al., 2006). A strategy that tar-
geted hotspot areas for intensive control measures was,
at least temporarily, successful in that country (Tushe-
mereirwe et al., 2006).
Despite eradication efforts that were established in

2013, BXW spread rapidly over short distances, as indi-
cated by cluster analysis (Shimwela et al., 2016). This
was probably due to the exchange of infected planting
materials among neighbouring farmers and the use of
farm tools without disinfestation, especially by traders
during harvesting. It is also possible that Xcm cells in the
ooze from cut stem surfaces were splash dispersed during
the rainy season. Rainfall in the warm season was posi-
tively correlated with the probability of BXW spread, and
it might be advisable to limit the cutting of diseased stems
to dry and hot periods. Seasonality and management of
the BXW epidemic in Kagera region were addressed in a
parallel paper (Shimwela et al., 2016).
In conclusion, BXW is strongly clustered over short

distances in Kagera. Hence, hotspot-targeted interven-
tions are recommended for disease management in the
region. The authors propose that BXW management
could be improved by implementing cultural practices
during high temperatures and low precipitation condi-
tions that do not promote disease development (Shim-
wela et al., 2016). Finally, because climatic conditions
are highly conducive for BXW establishment in other,
unaffected banana-growing regions in Tanzania, strict
quarantine measures and routine surveillance for the dis-
ease should occur in these areas. The BXW experience in
Kagera highlights the importance of keeping these areas
free of this disease.

Acknowledgements

This work was made possible by the generous support of
the American people through the United States Agency
for International Development (USAID)-funded Innova-
tive Agricultural Research Initiative project (iAGRI;
award no. CA-621-A-00-11-00009-00). The opinions
expressed herein are those of the author(s) and do not
necessarily reflect the views of the US Agency for Inter-
national Development or the United States Government.
The authors thank Walter Bowen for facilitation of the
funding and for his general guidance. They are grateful
to the Esther B. O’Keeffe Foundation for contributing

additional funding to this research. The authors also
acknowledge the contributions by Mgenzi Byabachwezi,
Jerome Kubiriba, Justine Mchunguzi, Shaban Mkulila,
Innocent Ndyetabura and Bulili Sayi for providing survey
data and other valuable information from Tanzania.

References

Abele S, Twine E, Legg C, 2007. Food Security in Eastern Africa and the

Greater Lake Region. Ibadan, Nigeria: International Institute for

Tropical Agriculture (IITA).

Adikini S, Beed F, Tusiiime G et al., 2013. Spread of Xanthomonas

campestris pv. musacearum in banana plants: implications for

management of banana Xanthomonas wilt disease. Canadian Journal

of Plant Pathology 35, 458–68.

Beyer HL, 2012. Geospatial Modelling Environment (version 0.7.2.1).

[http://www.spatialecology.com/gme]. Accessed 5 October 2016.

Blomme G, Jacobsen K, Ocimati W et al., 2014. Fine-tuning banana

Xanthomonas wilt control options over the past decade in East and

Central Africa. European Journal of Plant Pathology 139, 271–87.

Bouwmeester H, Abele S, Manyong VM et al., 2010. The potential

benefits of GIS techniques in disease and pest control: an example

based on a regional project in Central Africa. Acta Horticulturae 879,

333–40.

Brown JL, 2014. SDMTOOLBOX: a python-based GIS toolkit for landscape

genetic, biogeography, and species distribution model analyses.

Methods in Ecology and Evolution 5, 694–700.

Carter BA, Reeder R, Mgenzi SR et al., 2010. Identification of

Xanthomonas vasicola (formerly X. campestris pv. musacearum),

causative organism of banana xanthomonas wilt, in Tanzania, Kenya

and Burundi. Plant Pathology 59, 403.

Castellani E, 1939. Su un marciume dell’ ensete. L’Agricoltura Coloniale,

Italy 33, 297–300.

Cellier G, Remenant B, Chiroleu F, Lefeuvre P, Prior P, 2012. Phylogeny

and population structure of brown rot- and Moko disease-causing

strains of Ralstonia solanacearum phylotype II. Applied and

Environmental Microbiology 78, 2367–75.

Elith J, Phillips SJ, Hastie T, Dudik M, Chee YE, Yates CJ, 2011. A

statistical explanation of MaxEnt for ecologists. Diversity and

Distributions 17, 43–57.

Gatrell AC, Bailey TC, Diggle PJ, Rowlingson BS, 1996. Spatial point

pattern analysis and its application in geographical epidemiology.

Transactions of the Institute of British Geographers 21, 256–74.

Getis A, Ord J, 1992. The analysis of spatial association by use of

distance statistics. Geographical Analysis 24, 189–206.

Getis A, Morrison AC, Gray K, Scott TW, 2003. Characteristics of the

spatial pattern of the dengue vector, Aedes aegypti, in Iquitos, Peru.

American Journal of Tropical Medicine and Hygiene 69, 494–505.

Gottwald TR, Sun X, Riley T, Graham JH, Ferrandino F, Taylor EL,

2002. Georeferenced spatiotemporal analysis of the urban citrus

canker epidemic in Florida. Phytopathology 92, 361–77.

Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A, 2005. Very high

resolution interpolated climate surfaces for global land areas.

International Journal of Climatology 25, 1965–78.

Hosmer DW, Lemeshow S, 2000. Applied Logistic Regression. 2nd edn.

New York, NY, USA: Wiley.

Kubiriba J, Bagamba F, Rockfeller E, Tushemereirwe WK, 2012. The

changing spread dynamics of banana Xanthomonas wilt (BXW) in

Uganda. Uganda Journal of Agricultural Sciences 13, 53–60.

Madden VL, Hughes G, van den Bosch F, 2007. The Study of Plant

Disease Epidemics. St Paul, MN, USA: APS.

Nakato VG, Beed FD, Ramathani I, Kubiriba J, Rwomushana I, Opio F,

2013. Risk of banana Xanthomonas wilt spread through trade.

Journal of Crop Protection 2, 151–61.

Narouei-Khandan HA, Halbert SE, Worner SP, VanBruggen AHC, 2016.

Global climate suitability of citrus huanglongbing and its vector, the

Asian citrus psyllid, using two correlative species distribution modeling

Plant Pathology (2017) 66, 1003–1014

BXW spread in Tanzania 1013

http://www.spatialecology.com/gme


approaches, with emphasis on the USA. European Journal of Plant

Pathology 144, 655–70.

Nkuba J, Tinzaara W, Night G et al., 2015. Adverse impact of banana

Xanthomonas wilt on farmers’ livelihoods in Eastern and Central

Africa. African Journal of Plant Science 9, 279–86.

Ocimati W, Ssekiwoko F, Karamura E, Tinzaara W, Eden-Green S,

Blomme G, 2013. Systemicity of Xanthomonas campestris pv.

musacearum and time to disease expression after inflorescence

infection in East African highland and Pisang Awak bananas in

Uganda. Plant Pathology 62, 777–85.

Ormsby T, Napoleon E, Burke R, Feaster L, Groessl C, Bowden L, 2010.

Getting to Know ARCGIS Desktop: Updated for ARCGIS 10. 2nd edn.

Redlands, CA, USA: ESRI Press.

Pfeiffer DU, Robinson TP, Stevenson M, Stevens KB, Rogers DJ,

Clements ACA, 2008. Spatial Analysis in Epidemiology. Oxford, UK:

Oxford University Press.

Phillips S, 2006. A brief tutorial on MaxEnt. [http://

www.cs.princeton.edu/~schapire/maxent/tutorial/tutorial.doc].

Accessed 5 October 2016.

Phillips SJ, Anderson RP, Schapire RE, 2006. Maximum entropy

modeling of species geographic distributions. Ecological Modeling 190,

231–59.

Rugalema G, Mathieson K, 2009. Disease, Vulnerability and Livelihoods

on the Tanzania-Uganda Interface Ecosystem to the West of Lake

Victoria. Rome, Italy: FAO.

Senay SD, Worner SP, Ikeda T, 2013. Novel three-step pseudo-absence

selection technique for improved species distribution modelling. PLoS

ONE 8, e71218.

Shaw MW, Osborne TM, 2011. Geographic distribution of plant

pathogens in response to climate change. Plant Pathology 60, 31–43.

Shimelash D, Alemu T, Addis T, Turyagyenda FL, Blomme G, 2008.

BXW in Ethiopia: occurrence and insect vector transmission. African

Crop Science Journal 16, 75–87.

Shimwela MM, Ploetz RC, Beed FD et al., 2016. Banana xanthomonas

wilt continues to spread in Tanzania despite an intensive symptomatic

plant removal campaign: an impending socio-economic and ecological

disaster. Food Security 8, 939–51.

Thwaites R, Eden-Green S, Black R, 2000. Diseases caused by bacteria.

In: Jones DR, ed. Diseases of Banana, Abac�a and Ensete. Wallingford,

UK: CABI Publishing, 213–39.

Tripathi L, Mwangi M, Abele S, Aritua V, Tushemereirwe WK,

Bandyopadhyay R, 2009. Xanthomonas wilt: a threat to banana

production in East and Central Africa. Plant Disease 93, 440–51.

Tushemereirwe W, Kangire A, Ssekiwoko F et al., 2004. First report of

Xanthomonas campestris pv. musacearum on banana in Uganda. Plant

Pathology 53, 802.

Tushemereirwe WK, Okaasai O, Kubiriba J et al., 2006. Status of

banana Xanthomonas wilt in Uganda. African Crop Science Journal

14, 73–82.

V�aclav�ık T, Meentemeyer RK, 2009. Invasive species distribution

modeling (iSDM): are absence data and dispersal constraints needed to

predict actual distributions? Ecological Modelling 220, 3248–58.

Williams GJ, 2009. RATTLE: a data mining GUI for R. R Journal 1,

45–55.

Yirgou D, Bradbury JF, 1968. Bacteria wilt of enset (Ensete ventricosum)

incited by Xanthomonas musacearum sp. n. Phytopathology 58,

111–2.

Yirgou D, Bradbury JF, 1974. A note on wilt of banana cause by the

enset wilt organism Xanthomonas musacearum. East African

Agriculture and Forest Journal 40, 111–4.

Yuen J, Mila A, 2015. Landscape-scale disease risk quantification and

prediction. Annual Review of Phytopathology 53, 471–84.

Supporting Information

Additional Supporting Information may be found in the online version of

this article at the publisher’s web-site.

Figure S1. Spatial distribution of hotspots of banana xanthomonas wilt

at distances 1, 5 and 10 km for 2007 and 2008, as determined by Getis

and Ord G�
i ðdÞ statistics.

Figure S2. Spatial distribution of hotspots of banana xanthomonas wilt

at distances 1, 5 and 10 km for 2009 and 2010, as determined by Getis

and Ord G�
i ðdÞ statistics.

Figure S3. Spatial distribution of hotspots of banana xanthomonas wilt

at distances 1, 5 and 10 km for 2011, as determined by Getis and Ord

G�
i ðdÞ statistics.
Figure S4. Spatial clusters of banana xanthomonas wilt in Kagera

region in 2011, using the local statistic G�
i ðdÞ with three different thresh-

old distances. Significant clusters at distances of 1, 5 and 10 km are pre-

sented in red, gold and yellow, respectively. The G�
i ðdÞ values that did

not increase with these distances were designated as not significant. The

cluster distribution in 2011 was not comparable to those in 2007–10

because the sample size was small and concentrated in only a few wards.

Figure S5. The results of the jackknife test of variable importance. The

environmental variable with highest gain when used alone was bio18,

which therefore appeared to have the most useful information by itself.

The environmental variable that decreased the gain most when it was

omitted was bio19, which, therefore, appears to have the most informa-

tion that is not present in the others variables.

Table S1. Summary of the sources of data of the banana xanthomonas

wilt cases used in this study.

Table S2. Variables used for georeferenced logistic regression and

MaxEnt distribution modelling, including average altitude and 19 cli-

matic variables downloaded from the WorldClim-Global climate data

website (www.worldclim.org).

Text S1. Methodology for Ripley’s K function and Getis and Ord

G�
i ðdÞ.
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