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Abstract. Bacillus anthracis, the causative pathogen of anthrax, is a spore-forming, environmentally maintained
bacterium that continues to be a veterinary health problem with outbreaks occurring primarily in wildlife and livestock.
Globally, the genetic populations of B. anthracis include multiple lineages, and each may have different ecological
requirements and geographical distributions. It is, therefore, essential to identify environmental associations within
lineages topredict geographical distributions and risk areaswith improved accuracy.Here,wemodel the ecological niche
and predict the geography of the most widespread sublineage of B. anthracis in the continental United States using
updated MERRA-derived (Modern Era Retrospective analysis for Research and Applications; the NASA atmospheric
data reanalysis of satellite information with multiple data products) bioclimate variables (i.e., MERRAclim data) and
updated soil variables. We filter the occurrence data associated with the A1.a/Western North American sub-lineage of
B. anthracis from historical anthrax outbreaks using the multiple-locus variable-number tandem repeat system. In ad-
dition, we also incorporate recent cases associated with B. anthracis A1.a sub-lineage from 2008 to 2012 in Montana,
Colorado, and Texas. Our results provide the predicted distribution of the A1.a sub-lineage of B. anthracis for the United
States with better predictive accuracy and higher spatial resolution than previous estimates. Our prediction serves as an
improved disease riskmap to better inform anthrax surveillance and control in the United States, particularly the Dakotas
and Montana where this sub-lineage is persistent.

INTRODUCTION

Anthrax is a zoonotic disease affecting animals and humans
nearly worldwide.1 The causative agent of anthrax, Bacillus
anthracis, is a spore-forming, environmentally maintained
bacterium,which is endemic to specific soil environments and
can persist for years to decades under suitable conditions.2

Several ecological niche modeling studies define the suitable
habitat for B. anthracis spore persistence as grassland or
steppewith a narrow range ofmoderate normalized difference
vegetation index (NDVI; 0.2–0.5), limited annual precipitation,
and high soil pH.3–6 Anthrax is established in theUnitedStates
and was likely introduced during the European colonization
through cattle trading and animal production7,8 (although it
has also been hypothesized at least one lineage may have
migrated across the Bering Land Bridge9). It was a significant
problem to livestock and wildlife until the late 1950s when
vaccination was introduced.10,11 Although vaccination is
available and inexpensive, it is often used as reactionary
outbreak control rather than proactive disease prevention4

in livestock; administration in wildlife is logistically
untenable.12,13 Presently, anthrax continues to occur in the
historical enzootic zone of West Texas14 and the re-emergent
zone of southwestern Montana.15,16 Current anthrax control
and management strategies in wildlife focus on surveillance
and carcass decontamination during the risk season.16,17

Therefore, identifying potential locations where the pathogen
might persist and quantifying the anthrax risk across the
landscape would help to define priority areas for effective
disease control and management. To precisely quantify the

geographical distribution of B. anthracis, it is necessary to
improve our understanding of the ecology of the pathogen.
Applications of ecological niche models (ENMs; i.e., spe-

cies distribution models) to the disease systems remain an
important tool to estimate disease distributions and risk areas.
Multiple studies use ENMs to predict spatial distributions
of the pathogens based on outbreak locations,3,4,6,18 the
presence of vectors,19–21 and the occurrence of hosts or
reservoirs.22–24 Modeling a species’ geographical distribution
is primarily basedon identification of nonrandomassociations
between the occurrence locations of a species and environ-
mental suitability for its survival.25,26 The ecological niche of a
species was classically defined as an n-dimensional hyper-
volume of environmental covariates determining the ecologi-
cal space of the species while maintaining the species
population without immigration.26,27 The exploration of envi-
ronmental covariates for the ecological niche of a species and
their environmental coverages (i.e., the rangeof environmental
covariates suitable for species’ survival) also helps capture the
underlyingbiologicalmechanismsof the species responses to
the environment, as well as the physiology and ecology of the
species. In the case of B. anthracis, understanding the envi-
ronmental factors associated with the outbreak locations or
isolate locations can infer and predict the habitats promoting
pathogen persistence, which are used to identify priory areas
for targeted anthrax surveillance and management.
Recent studies suggest different genetic lineages of a

pathogen have distinct ecological requirements for survival
and geographical distributions.6,28,29 To date,B. anthracis has
broadly been defined by clades A–E (i.e., lineages; E also
defined as Aβ or the West Africa Group [WAG]30). Sub-
lineages (or sub-branches) of the A clade, such as Ames sub-
lineage (A3.b), Vollum sub-lineage (A4), and Aust94, are
globally distributed,31,32 whereas lineages B, C, and D are
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spatially confined33 and the WAG group appears limited to
West Africa. A previous study in Kazakhstan suggested
B. anthracis belonging to sub-lineage A1.a were associated
with a broader environmental space than the larger genetic
population comprising multiple A cluster sub-lineages.6 This
study highlighted the importance of understanding genetic-
environmental associations for accurately modeling the dis-
ease distribution.6 Moreover, the study on the ENMs of
B. anthracis on three continents and their transferability
among those countries suggested the ecological associations
for B. anthracis within each country were different and
reflected niche specialization across sub-lineages.34

Bacillus anthracis diversity in the United States includes
three sub-lineages in A clade, the A1.a (Western North
American [WNA]), A3.b (Ames like), and A4 (Vollum like),4,31

with limited outbreaks of B and C clade isolates in recent
decades.33 Different lineages/sub-lineages broadly have dif-
ferent spatial patterns,31 including subnational or regional
distributions. For example, outbreaks in the North Central
United States appear to be dominated by the A1.a sub-
lineage, whereas the A3.b and A4 sub-lineages show con-
strained distributions in the southwest, especially Texas.31,35

Although the potential geographic distribution of B. anthracis
was mapped in the continental United States using historical
outbreak records,4,34 a stated limitation could be that out-
break data included multiple genotypes of the pathogen.36,37

Although one study modeled the A1.a sub-lineage for the
United States, the modeling was focused on the comparison
of the United States with Italy and Kazakhstan using a limited
set of coverages available for all three landscapes.34 Re-
emergence of anthrax in Colorado in 2012, an area without
reported disease since the late 1970s, yielded a diagnostic
strain for genotyping, thereby contributing to our un-
derstanding of the diversity and distribution of the A1.a sub-
lineage in the United States.
Here, we focused on improving the ENM-based prediction

of the dominant sub-lineage of B. anthracis in the continental
United States by combining data fromnew strains from recent
field collections, multiple-locus variable-number tandem re-
peat (MLVA)-25 confirmation of lineage in three states, and
using an updated bioclimatic variable set recently introduced
to the modeling community and a new variable contribution
estimation tool for Genetic Algorithm for Ruleset Prediction
(GARP) to estimate optimal variable space.

MATERIALS AND METHODS

Anthrax occurrence data. A historical Geographical In-
formation System (GIS) database of B. anthracis isolates from
the continental United States was derived from previous
studies,4,9,14 and new strains from recent field collections in
western Montana, Colorado, and Texas (Figure 1). The loca-
tions of those anthrax occurrence data were collected in the
field with latitude/longitude matching carcass locations, farm
front gate locations based on laboratory records or head-up
digitized on high-resolution remote sensing imagery based on
field reports or paper maps that defined to case locations.38

The detailed information of the historical dataset has been
summarized elsewhere.4 The new strains from Montana were
collected during the previously described 2008 outbreak15

and included isolates from plains bison (Bison bison bison)
and elk (Cervus candensis). One isolatewas collected from the

turbinates of a male bison skull in October 2010, ∼27 months
after it died in the 2008 outbreak. Strains fromwest Texas were
collected from a domestic cattle/white-tailed deer (Odcoileus
virginianus) outbreak in the summer of 2009 and an additional
deer case from the same ranch in 2010. A strain from south
Texas was recovered from a domestic cattle outbreak in 2008.
The strain from Colorado was isolated during an outbreak in
2012 with at least 50 domestic cattle involved.39 This outbreak
occurred in an area that has not reported the disease in nearly
40 years.39 Here, we filtered this database to include only iso-
lates in the A1.a sub-lineage as defined by the MLVA system
described inKeim et al.40 (MLVA-8) and Lista et al.41 (MLVA-25)
(N = 160). The distribution of A1.a sub-lineage and the larger
U.S. database are mapped in the Supplemental Figure.
Multiple-locus variable-number tandem repeat-25

genotyping. Strains fromMontana, Colorado, and Texas were
genotyped using the MLVA-25 described by Lista et al.,41 with
minor changes in PCR chemistry and adaptations in primer
labeling to perform analyses on the Applied Biosystems (ABI,
Foster City, CA) instruments. Multiplex PCR products were di-
luted 1:25 in molecular-grade water, and 0.5 μL of the diluted
multiplex reactions was mixed with 9.5 μL of a formamide/LIZ
1200 (ABI) size standard mixture and denatured. Fragment
sizingwas performedon anABI 3730 (AppliedBiosystems) and
variable-number tandem repeat (VNTR) sizes were determined
using GeneMapper™ software (Applied Biosystems). We ex-
aminedgenetic relationshipsbetweensamples in thecontext of
global representatives from Lista et al.41 using unweighted pair
group method with arithmetic mean cluster analysis. Matrix
distances were calculated in PAUP 4.0 (Sinauer Associates,
Inc., Sunderland, MA) and imported into MEGA 542 to build
phylogenetic trees based on MLVA-25. For this study, strains
were used in modeling if they were closely related to GT39,41

which is also the WNA lineage from Van Ert et al.43

Environmental data. We used 26 climatic and biophysical
covariates to serve as the potential environmental coverages
for modeling the distribution of the B. anthracis A1.a sub-
lineage. We used the most recent bioclimatic dataset (i.e.,
MERRAclim) downloaded from https://datadryad.org/ as
the set of temperature and moisture measurements (see
Table 1).44,45 Those 19 bioclimatic variables with a 2.5 arc
minute (∼4.5 × 4.5 kmat the equator) resolutionwere built with
data from the 2000s. Temperature-related layers were in-
terpolated using hourly temperature data, and moisture-
related layers were measured using specific humidity (i.e., kg
of water/kg of air based on monthly mean values) rather than
precipitation in millimeters like WorldClim.45,46 Elevation data
were accessed from WorldClim, which were derived from
Shuttle Radar Topography Mission data. Two additional
measurements of vegetation (NDVI) with 1 × 1 km spatial
resolution were obtained from the Trypanosomiasis and Land
Use in Africa research group (Oxford, United Kingdom),47 and
four 1-km soil variables were downloaded from the SoilGrids
Web site (https://soilgrids.org/)(see Table 1). Also, the detailed
description and source of all 26 environmental covariates are
summarized in Table 1. These environmental layers were
preprocessed using the rasterPrep function in “GARPTools”
R-package, which uses a “bilinear” interpolation method to
resample them to ∼4.5 × 4.5-km resolution and then crops
them to the same extent of the study area (i.e., the continental
United States)48 (available at https://github.com/cghaase/
GARPTools).
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Ecological niche modeling. Recently, a wide range of al-
gorithms have been used to model the B. anthracis ecological
niche. Several different models and algorithms, such as
GARP,3,16,34 boosted regression trees,49 and random forests,18

have been applied across spatial scales. Here, we used the
GARP modeling approach to directly compare the ecological
niche and predicted geographic distribution of the B. anthracis
A1.a sub-lineage with previous studies in the continental
Unitedtl States.4 Genetic Algorithm for Ruleset Prediction is
also one of the most common methods used to predict the
distribution of B. anthracis in different regions.3,4,6,16,34

Genetic Algorithm for Ruleset Prediction is a presence-only
modeling algorithm that iteratively searches for the non-
random relationships between occurrence locality (outbreak
locations) and environmental coverages (raster files of climatic
or environmental data). Genetic Algorithm for Ruleset Pre-
diction is one of the 13 key ecological niche modeling ap-
proaches available to niche modeling community50 and has
been widely applied in the literature to model species’ geo-
graphic distributions.19,51–53 The modeling system has been
defined in detail elsewhere.49,54–58 Briefly, GARP develops
a series of if/then logic statements, called “rules” (range,

negated range, atomic, or logit), to describe the presence or
absence of the target species in ecological space. Rules are
developed and tested internally using random draws of
presence points from the input occurrences and pseudo-
absences randomly generated by GARP from background
environment. The quality of each rule is evaluated via a chi-
square test on the comparison between the presence or ab-
sence prediction and the predefined proportion of input data.
Rules in a GARP experiment can be accepted, modified, or
deleted in a genetic fashion using deletions, insertions,
crossovers, etc., to improve predictive accuracy. Once a
ruleset (50 rules per model) is developed, it is projected onto
the landscape to develop a presence/absence prediction
describing the species’ occurrence. Examples of the re-
lationship between rulesets and geographic predictions can
be found elsewhere.38,55,59 Genetic Algorithm for Ruleset
Prediction has good performance across different patterns of
species distributions from endemic or disjunct to cosmopoli-
tan andhasbeenapplied in the fieldof ecology, biogeography,
conservation biology, evolution, and epidemiology.21,55,60,61

Model building and evaluation. Here, we used Desktop-
GARP (DG) version 1.1.3 to develop the GARP experiments.

FIGURE 1. Dendrogram of recent U.S.Bacillus anthracisA1.a/Western North American (WNA) lineage strains based onMLVA-25. Recent strains
genotyped are color-coded andmappedalongwith spatially uniqueB. anthracis localities used todevelop ecological nichemodel predictions (inset
map). The dendrogram was generated using unweighted pair group method with arithmetic mean clustering. Gray genotypes are defined by Lista
et al.41 The red area in the map represents the enzootic anthrax zone in West Texas defined by Blackburn et al.14 This figure appears in color at
www.ajtmh.org.
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Readers can freely access this version of DG from GitHub
(https://github.com/jkblackburn/DesktopGARP1.1.3). The
model building and evaluation followed the framework pro-
posed in a previous study.48 DesktopGARP records the in-
stance of the presence location in a raster cell, which has the
same resolution as the environmental layers (∼4.5 × 4.5 km at
the equator) and, therefore, does not distinguish between
multiple locations within a single cell. We used the spatially
unique routine within “GARPTools” R-package to filter the
occurrence dataset into 62 spatially unique points as the
model input data.59 We randomly split those spatially unique
points into 75% training, 25% testing before inputting the
occurrencedata intoDG.This external splittingprocedurewas
also used to test the performance of the GARP experiments.
The external testing sets (n= 15) werewithheld from theGARP
modeling experiments to calculate model accuracy,62

whereas the remaining occurrence points (external training
sets; n = 47) were used for model building. However, random
splits may result in some spatial biases, particularly here,
where reports of A1.a are limited in the southern states. It is
plausible that training sets may ignore the southern points. To
evaluate this,wedevelopedasuite of 10GARPexperiments to
evaluate the effect of input variability on model output, each
with a different random subset of external training and testing
data with 75%:25% ratio.63

Because the selection of appropriate predictors signifi-
cantly affects the prediction accuracy of ENMs,25 we adopted
a new variable contribution estimation procedure typically

designed for GARP48 to get the optimal set of environmental
variables. The variable contribution in GARP experiments (the
Unimportance Index [UI]) is estimated based on the preva-
lence (i.e., frequency) of the variable being used to predict the
presence of the species in the dominant presence rules in the
best subset of GARP models and the scaled median range of
variables.48 We first incorporated all 26 candidate covariates
in DG.We then calculated theUI for those covariates following
the variable contribution evaluation procedures in a previous
study.48 In general, the variable contribution within a GARP
experiment is estimated based on 1) the prevalence of each
environmental variable in the dominant presence rules of the
best subset of GARP model and 2) the range of the environ-
mental coverage across the best subset.48 A variable with
higher prevalence (across rules) and narrower environmental
coverage would indicate the variable is frequently used and
the species’ distribution is limited by this environmental con-
dition.48 The UI was designed to balance these two criteria.
We used a threshold to select variableswithUI less than 0.5 as
the optimal variable set for B. anthracis A1.a sub-lineage and
re-ran the GARP experiment using this reduced variable set.
All GARP experiments in this study were set up to run up to

200 models with a maximum of 1,000 iterations and a con-
vergence limit of 0.01.3,6 The external training data for model
building were partitioned with a 75%:25% internal training
testing split. We used the best subset procedure in DG-
selected 10 topmodels under a 10%hard omission threshold
and a 50%commission threshold for each of the experiment.4

TABLE 1
Environmental variables used for modeling the ecological niche of Bacillus anthracis sub-lineage A1.a

Environmental layer and description (unit) Names Source

Elevation (meter) Alt WorldClim*
Bioclimatic data (�C for temperature-
related variables; kg of water/kg of air
for water-related variables)

Annual mean temperature Bio1 MERRAclim†

Mean diurnal range Bio2
Isothermality (Bio2/Bio7) (×100) Bio3
Temperature seasonality (SD × 100) Bio4
Max temperature of warmest month Bio5
Min temperature of coldest month Bio6
Temperature annual range (Bio5–Bio6) Bio7
Mean temperature of most humid quarter Bio8
Mean temperature of least humid quarter Bio9
Mean temperature of warmest quarter Bio10
Mean temperature of coldest quarter Bio11
Annual mean specific humidity Bio12
Specific humidity of most humid month Bio13
Specific humidity of least humid month Bio14
Specific humidity seasonality (coefficient

of variation)
Bio15

Specific humidity mean of most humid
quarter

Bio16

Specific humidity mean of least humid
quarter

Bio17

Specific humidity mean of warmest
quarter

Bio18

Specific humidity mean of coldest quarter Bio19
Mean NDVI (no unit) wd0114a0 TALA‡
NDVI annual amplitude (no unit) wd0114a1 TALA
Top soil pH (no unit) pH SoilGrids§
Sand fraction in top soil (% weight) Sand fraction SoilGrids
Calcium vertisols (% weight) Calcium vertisol SoilGrids
Top soil organic content (g per kg) Organic content SoilGrids
NDVI = normalized difference vegetation index.
* worldclim.org/.48

† https://datadryad.org/.44,45

‡ Trypanosomiasis and Land Use in Africa (TALA) research group.47

§ https://soilgrids.org/.
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Finally, the best subset with 10 best presence–absence pre-
dictions in each experimentwere summedandmappedon the
landscape with model agreements indicating the likelihood of
the species presences using the “GARPTools” R-package.
Predictive accuracies for the best subsets from 10 GARP

experiments with the reduced variable set were evaluated
using the area under the curve (AUC) in a receiver operating
characteristics analysis based on the external testing dataset
(i.e., the 25% of occurrence points withheld from the model
building).60,64 The AUC is used extensively in species distri-
bution modeling and measures the ability of a model to dis-
criminate between sites where a species is present, versus
those where it is absent.62,65 The AUC, although not an ideal
metric for accuracy estimation,66 is useful to identify models
that perform well.19,67 We also calculated omission and
commission rates, including total omission, commission rates
and average omission, and commission rates62 (the defini-
tions and calculations of those metrics can be found in
Blackburn et al.4). We calculated accuracy metrics for 10
GARP experiments and ranked them by AUC, total omission,
and total commission, selecting the experiment balancing
high AUC, low omission, and relatively low commission. The
best GARP experiment with the highest AUC value was se-
lected to describe the ecological niche characteristics and
map the potential geographic distribution of the B. anthracis
sub-lineage A1.a in the continental United States.

RESULTS

Multiple-locus variable-number tandem repeat-25
results. Figure 1 illustrates the MLVA-25 genotypes of our
isolates from Texas, Montana, and Colorado compared with
the Lista et al.41 diversity panel representing the global genetic
population structure of B. anthracis. Multiple-locus variable-
number tandem repeat analysis confirmed A1.a isolates from
each Texas, Montana, and Colorado. Unique A1.a genotypes
were identified in each of the three states, and repeat numbers
at each locus for representatives of each genotype are re-
ported in Table 2. All of the strains met the A1.a inclusion
criteria to use strain locations in the ENM experiments.
Ecological niche modeling: estimation of variable

contributions. Table 3 reports the estimation of variable
contributions for all 26 candidate variables tested tomodel the
potential distribution of B. anthracis A1.a sub-lineage. The
lower the rescaled UI, the more the variable contributes to the
prediction. We selected 13 variables with UI less than 0.5,
including the seasonality of temperature and moisture, ele-
vation,meanNDVI, seasonality of NDVI, organic contents, pH,
and sand fractions of soil, as the optimal environmental af-
finities to describe the ecological niche of theB. anthracisA1.a
sub-lineage.
Model accuracy and geographic distribution. Table 4

summarizes the AUC values, omission, and commission rates
for the best subsets of 10 GARP experiments based on the
selected 13 variables. The AUC values of 10 experiments
varied from 0.831 to 0.938. The predicted geographic distri-
bution of B. anthracis A1.a is illustrated in Figure 2 as the
summation of the 10-model best subset for experiment 6 (see
Table 4). The total and average omission rates of this best
subset were 0 (suggesting all test data were predicted by all
models in the best subset), and the total and average com-
mission rates were 7.82% and 12.41%, respectively.

The predicted distribution of the B. anthracis A1.a sub-
lineage was concentrated across the Dakotas, Minnesota,
most of Montana, eastern Idaho, Nebraska and Iowa, north-
western Wyoming, southern Wisconsin, northern Illinois,
North Central Kansas, and southwestern Texas (Figure 2).
Some sporadic parts in western California, northern Utah, and
southern Arizonawere identifiedwith the relatively highmodel
agreement in the best subset. Figure 3 illustrates the scaled
median ranges and coverages of variables in the dominant
rules of the best subset in GARP experiment 6 with the re-
duced variable set.Organic content had the narrowestmedian
range (5–118 g per kg soil), whereas NDVI annual amplitude
had the widest median range varying from 0.006 to 0.594. Soil
pH (6.23–7.75),meanNDVI (−0.15–0.42), andBio5 (35.3–44.25�C)
also had relatively narrow coverages.

DISCUSSION

This study examined the relationship of B. anthracis geno-
types from recent outbreaks and ideal environmental cover-
ages to better predict the geographic distribution of a single
sub-lineage of B. anthracis (A1.a), the most geographically
widespread sub-lineage in the continental United States. We
identified13of 26covariates of high importance indefining the
ecological niche of B. anthracis A1.a, which included the
seasonality of temperature and moisture, soil pH, organic
contents, sand fraction, and vegetation index. The geographic
prediction of B. anthracis A1.a sub-lineage was primarily
constrained in North Central United States and southwestern
Texas.
The distribution of B. anthracis A1.a sub-lineage was more

conservative when compared with predictions in previous
studies using confirmed anthrax outbreaks regardless of ge-
netic lineage.4 In the Blackburn et al.,4 B. anthracis was pre-
dicted to be restricted to a north–south corridor from the
Dakotas, eastern Montana, and western Minnesota, south-
ward through western Oklahoma, central Kansas, central
Nebraska, to southwestern Texas. Those estimates also
predicted areas in eastern Washington, Oregon, western
California, and southern New Mexico. A more recent study
describing the UI function in GARPTools48 applied the tool to
reexamine variable importance in modeling the original
Blackburn et al.4 outbreak data. Again, the distribution from
the Dakotas to Texas was more continuous than the predic-
tions here. However, extensive efforts to examine genetic di-
versity in the United Studies using MLVA-25 reveal frequent
circulation of A4 (Vollum) and A3.b (Ames-like) strains in
Texas,35,68 particularly in the recently definedenzootic zone,14

with fewer A1.a outbreaks in Texas. Restricting the occur-
rencedata toA1.a strains produceddisjunct predictions along
the north–south corridor compared with the earlier studies. A
similar disjunct distribution was noted in a study focused on
the genetics of Ames-like isolates.31

We hypothesize that these differences in predictions are
driven by different ecological affinities across B. anthracis
sub-lineages. Whereas the northern states are dominated by
A1.a isolates, West Texas has a long history of anthrax with
annual sporadic cases and frequent outbreaks.69 More than
179 isolates were spread across 39 counties in Texas from
1970 to 2000.31 In recent decades, outbreaks were continu-
ously reported in the enzootic zones in southwestern Texas.
The genetic populations of B. anthracis in West Texas are
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diverse with at least three sub-lineages of B. anthracis A
clades included. A localized ENM to study the distributions of
different strains may, therefore, be needed to accurately
model the anthrax risk in Texas.
Our findings here suggest genotype-specific models fo-

cusing on the association between a single genetic group and
their response to the environment improves model accuracy
and predictive power. The best experiment in this study
showedhighmodel accuracywithanAUCvalueof 0.93,which
indicates a reliablemodel output andprediction.Notably, all of
the experiments performedwell (Table 4). Themodel accuracy
for B. anthracis A1.a sub-lineage increased significantly,
compared with previous U.S. modeling efforts.4,48

Here, we identified the optimal variable set for the
B. anthracis A1.a sub-lineage as the combination of the sea-
sonality of temperature (Bio2, Bio4, Bio5, Bio7, and Bio8) and

moisture (Bio12 and Bio15), elevation, mean NDVI, season-
ality of NDVI, organic contents, pH, and sand fractions based
on our estimation of variable contributions. This selection
correlates well with previous knowledge about the ecology of
B. anthracis.37Blackburn et al.4 usedadifferent and limited set
of covariates from other sources to develop the original
B. anthracis prediction in the United States, including the an-
nual trend of climate (i.e., mean annual temperature and pre-
cipitation), elevation, mean NDVI, soil moisture, and pH.
Recently, we used an exhaustive method, examining UI, to
select 12 of 26 variables to describe the ecological niche of
B. anthracis with multiple sub-lineages in the A Clade, with
calciumvertisols andBio1 being selected rather than theBio4,
Bio7, and Bio12 selected in this study.48 Although the ran-
domness in GARP algorithms are hard to avoid, the employ-
ment of the same modeling approach, variable selection

TABLE 3
Estimation of variable contributions in Genetic Algorithm for Ruleset Prediction experiment

Variables Descriptions Prevalence Median range Rescaled UI

Bio5 Maximum temperature of warmest month 0.857 0.382 0
Mean NDVI Mean NDVI 0.857 0.385 0.001
Sand fraction Sand fraction 0.857 0.479 0.037
pH Soil pH 0.743 0.332 0.082
Altitude Elevations 0.8 0.477 0.109
Organic contents Organic contents in top soil 0.629 0.26 0.112
Bio4 Temperature seasonality 0.829 0.669 0.160
Bio2 Mean diurnal range 0.629 0.383 0.234
Bio15 Specific humidity seasonality 0.686 0.491 0.266
NDVI amplitude NDVI amplitude 0.714 0.573 0.292
Bio7 Temperature annual range 0.657 0.558 0.365
Bio8 Mean temperature of most humid quarter 0.543 0.464 0.420
Bio12 Annual mean specific humidity 0.686 0.768 0.498
Calcium vertisols Calcium vertisols 0.543 0.551 0.527
Bio14 Specific humidity of least humid month 0.743 1 0.541
Bio13 Specific humidity of most humid month 0.664 0.768 0.543
Bio3 Isothermality 0.627 0.696 0.548
Bio10 Mean temperature of warmest quarter 0.457 0.488 0.562
Bio17 Specific humidity mean of least humid

quarter
0.714 1 0.618

Bio11 Mean temperature of coldest quarter 0.6 0.795 0.704
Bio18 Specific humidity mean of warmest

quarter
0.543 0.71 0.721

Bio1 Annual mean temperature 0.486 0.667 0.770
Bio16 Specific humidity mean of most humid

quarter
0.514 0.73 0.802

Bio6 Minimum temperature of coldest month 0.457 0.668 0.823
Bio9 Mean temperature of least humid quarter 0.543 0.81 0.843
Bio19 Specific humidity mean of coldest quarter 0.571 1 1
NDVI = normalized difference vegetation index; UI = unimportance index. Here, we use 0.5 as the threshold to select variables that are relatively more important to Bacillus anthracis A1.a

sub-lineage based on rescaled UI.

TABLE 4
Model accuracy metrics of GARP experiments with the optimal variable set

GARP
experiment

Area under
the curve SE z-score

Total
omission

Average
omission

Total
commission

Average
commission

6 0.9379 0.0433 6.78 0 0 12.41 7.82
3 0.9008 0.0531 6.36 0 6.67 12.83 7.82
4 0.8980 0.0538 6.55 0 0 20.4 7.82
8 0.8973 0.0539 6.44 0 0.67 18.78 7.82
2 0.8960 0.0542 6.63 0 0 20.79 7.82
9 0.8841 0.0566 6.57 0 0 23.18 7.82
10 0.8704 0.0611 4.02 0.07 7.29 15.56 7.82
7 0.8566 0.0622 3.79 0.07 17.96 9.65 7.82
1 0.8378 0.0675 3.85 0.13 15.24 12.15 7.82
5 0.8310 0.0641 3.85 0.07 13.9 19.93 7.82

GARP = Genetic Algorithm for Ruleset Prediction.
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framework, and candidate environmental layers (26 variables)
between this study and Yang et al.48 allows us to directly
compare the twomodel results to assess thedifferencesof the
ecological niche within A Clade in the continental United
States.
The GARP experiments in this study described the unique

ecological niche of the B. anthracis A1.a sub-lineage, one of
three major sub-lineages in the United States and the most
geographically widespread. Given the exploration of envi-
ronmental coverages of GARP outputs, the presence of the
B. anthracis A1.a sub-lineage is predicted to be found in
areas with high soil pH (6.23–7.75), low sand fraction
(18.79–52.84%), organic contents ranging between 5 and 118
g/kg soil, mean NDVI from −0.13 to 0.42, NDVI amplitude from
0.01 to 0.59, relatively low elevation (151–1,755 m), and some
highly varied climate conditions (detailed in Figure 3). Com-
paring with the environmental coverages suggested in Yang
et al.48 for multiple genetic lineages, some environmental
covariates have similar coverages, such as mean NDVI and
Bio2. However, other covariates exhibit narrower coverages
for the B. anthracis A1.a sub-lineage, like organic contents,
sand fraction, Bio15, Bio8, and Bio5. This may be because
most of the occurrence data for the B. anthracis A1.a sub-
lineage is the subset of the data used in multi-strain studies.
There were also some covariates suggesting unique ranges
with the larger envelopes for the A1.a sub-lineage. For ex-
ample, NDVI annual amplitude was 0.01–0.38 in the previous
study, but here we found a wider range (0.006–0.594); eleva-
tion was 134.8–1,321.95 m in the previous study, whereas
here we found the range of 150.84–1,755.1 m. For soil pH, the
previous study of multiple strains suggested the optimal me-
dian range was 6.52–8.19, whereas soil pH for A1.a sub-
lineage was 6.23–7.75. These findings likely result from the

incorporation of new occurrence data in Montana and Colo-
rado. The two bison cases inMontana were found in the areas
with soil pH of 6.24 and 6.52, elevations of 1,755.15 and
1,717.93 m, and NDVI annual amplitude of 0.43 and 0.28.
Because the soil pH in the continental United States ranges
from 4.02 to 8.87, the suitable soil pH for A1.a sub-lineage are
still considered to be relatively alkaline. These larger ecologi-
cal envelopes support the hypothesis that B. anthracis A1.a
sub-lineage has broad environmental tolerances that con-
tribute to its broad geographical distributions globally.6,33 Our
results highlight the importance of understanding the envi-
ronmental affinities of individual lineages or sub-lineages of
B. anthracis to describe the ecology of the disease and esti-
mate the disease risk on the landscape.6

Here, we show improved model accuracy for mapping the
extent of B. anthracis A1.a in the continental United States
using a combination of new genetic subtyping data, modern
coverages, updated outbreak information, and novel ENM
tools. Integrating MLVA-25 data improved mapping efforts
and suggests different lineages are adapted to different
ecological conditions. The use of new climatic data improves
resolution to delineate areas of the Dakotas and west Texas.
The changes in prediction in Texas using the A1.a model
supports the concept that the A4 and A3b lineages, both
frequently identified as the primary lineages in enzootic
outbreaks in the areas, likely have different environmental
factors driving persistence. Ongoing efforts to model these
lineages are underway using these new tools and up-to-date
outbreak data. This approach is necessary for improving
mapping efforts to support near-term disease surveillance
and control and to guide longer term planning and decision-
making. This disease remains a high priority across the
American West, a vast and difficult-to-traverse landscape.4

FIGURE 2. The prediction of Bacillus anthracis A1.a sub-lineage in the continental United States from the best performing best subset in the
GeneticAlgorithm forRulesetPrediction (GARP) experiment using theselectedvariable set. Thevalueof eachpixel is themodel agreement. It shows
how many models from the 10 best models in the best subset of the GARP experiment 6 predict the presence of the species in this pixel, which
indicates the likelihood of the species occurrence. Areas of darker blue represent areas of greatestmodel agreement. This figure appears in color at
www.ajtmh.org.
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Control efforts for wildlife continue to rely on rapid identifi-
cation of carcasses and burning; identifying where to best
expend resources for these efforts remains a critical priority.
With the predictionmaps serving as the proxy of anthrax risk,
these efforts will improve the efficacy of disease control,
carcass surveillance, and disease management in the con-
tinental United States.6,16
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